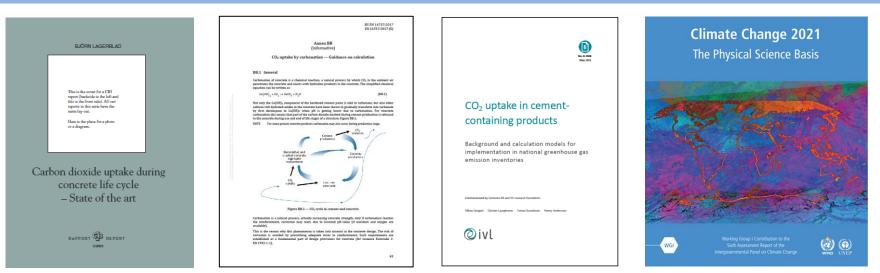

Carbon Uptake: Establishing the Baseline

Sunday, March 24, 2024 ACI Spring Convention, New Orleans, LA

Jamie Farny

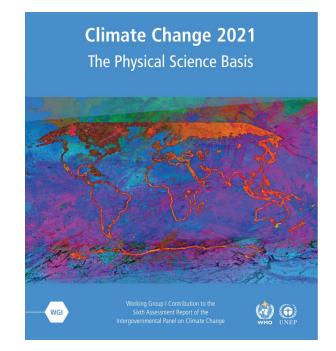
Director, Environmental Measurement & Metrics Portland Cement Association


CONVENTI

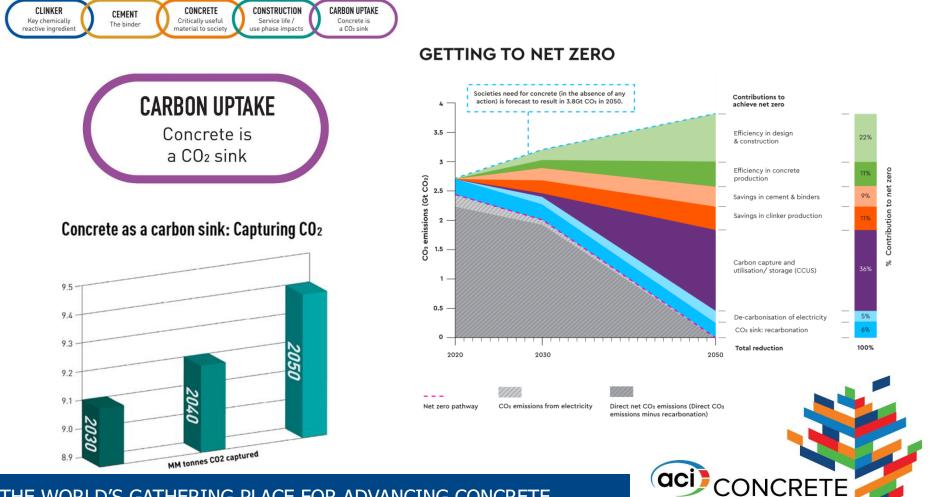
Outline

- Carbon uptake recognition, chemistry, contribution to carbon neutrality
- Importance of baseline for measurement, reporting
- Quantifying carbon uptake at project level, country level
- Current data gaps, potential research, data needs
- NIST Low Carbon Cements and Concretes Consortium
- PCA policy priorities

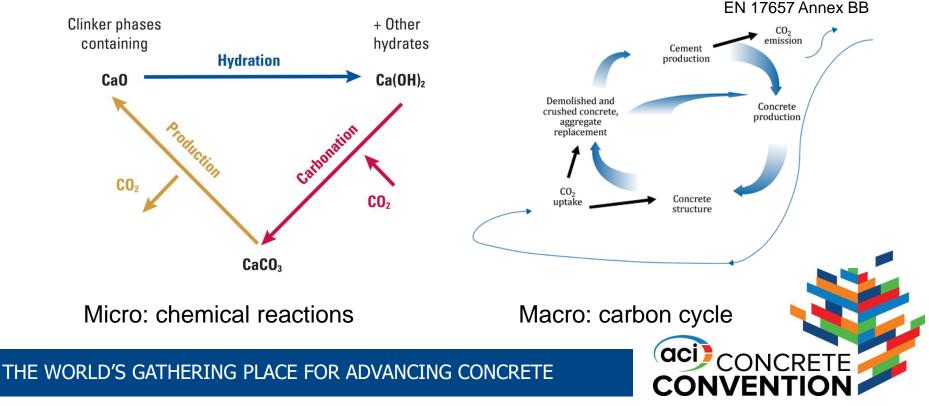
Some Key Resources



2005 – Lagerblad	2017 – BS EN 16757 Annex BB	2021 – IVL Report B 2309	2021 – IPCC AR6
CO ₂ uptake during concrete life cycle	EPDs and PCRs for concrete/elements	CO ₂ uptake in cement- containing products	Comprehensive assessment report on climate change
Provide documentation of concrete carbonation during service life and secondary use (Swedish Cement and Concrete Research Institute)	Guidance on calculation of CO ₂ uptake (British Standard)	Background and calculation models for implementation in national greenhouse gas emission inventories (IVL Swedish Environmental Research Institute)	Calls for rapid and far- reaching transitions across all sectors and systems to achieve deep and sustained emissions reductions (IPCC)


Intergovernmental Panel on Climate Change

- IPCC Sixth Assessment Report
- Carbonation recognized:
 - CO₂ emissions from carbonates in cement production are around 4% of total fossil CO₂ emissions.
 - CO₂ uptake in cement infrastructure (carbonation) offsets a significant portion of the carbonate emissions from current cement production (Friedlingstein et al., 2020).


PCA & GCCA Roadmaps & Carbonation (promote recognition of carbon uptake)

CONVENTIO

Cement Manufacture, Carbon Uptake

- Manufacture: $CaCO_3 \rightarrow CaO + CO_2$
- Hydration: CaO + $H_2O \rightarrow Ca(OH)_2$
- Uptake: $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

Baseline for Carbonation is Clinker Production

- Clinker production generates CO₂
- Fuel emissions are not offset by carbonation
- Calcination emissions ~60% of cement plant CO₂ emissions = the theoretical maximum uptake
- Multiple levers to reduce or offset CO₂ emissions:
 - Reduce clinker factor from ~0.91 current to 2050 target = 0.75
 - Decarbonated raw feed
 - Lower clinkering temperatures
 - Promote recognition of carbon uptake

Project-Level Carbonation MIT Calculator Factors that Affect Carbon Uptake

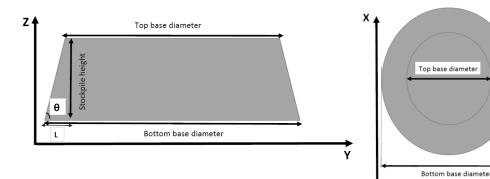
- Time (life cycle)
- Geometric, locational
- Mix design
- Cement and concrete practices vary by country
- Annex BB, IVL, Lagerblad, etc.

Use phase Carbon Uptake

Input name	Value (Please fill out all the yellow cells)
1. General	
Analysis period (years)	100
2. Geometric and locational characte	eristics
Concrete volume (m3)	10
Surface area (1) (m2)	0
Exposure condition (1)	Indoor (without cover)
Surface area (2) (m2)	0
Exposure condition (2)	Indoor (without cover)
3. Mix design characteristics	
Compressive strength (MPa)	25-35 MPa
Portland cement content (kg/m3)	350
Slag content (kg/m3)	0
Fly ash content (kg/m3)	0
Limestone content (kg/m3)	0
Use phase Carbon uptake (kg CO2)	0

Total Carbon uptake (kg CO₂)

195



Project-Level Carbonation MIT Calculator Factors that Affect Carbon Uptake

- EOL storage conditions affect carbonation
- Size of aggregate pile
- Aggregate grading
- Exposure

Input name	Value (Please fill out all the yellow cells)
Top base diameter (m)	3.4
Bottom base diameter (m)	6.2
Stockpile height (m)	1
Crushed concrete grading	Fine (particles less than 16 mm)
Stockpiling time period (years)	1.5
Slope - θ (degrees)	20
Sheltered from rain?	No
Mass of crushed concrete* (metric ton)	21.15
End-of-life Carbon uptake (kg CO2)	195

End-of-life Carbon Untak

Country-Level Carbonation CO₂ uptake in cement-containing products

- IVL Report No. B 2309 Swedish Research Institute, May 2021
- 3 methodologies: Tier 1, Tier 2, Tier 3
- Tier 1 is called "simplified methodology"
- Tiers 2 and 3 require greater effort more data, analysis, specificity

CO ₂ uptake in cement- containing products Background and calculation models for implementation in national greenhouse g emission inventories
implementation in national greenhouse g
Commissioned by Comerta AB and IVA research foundation Hillian Stripple Christer Ljangkrantz Tomia Oustafsson Romy Andersson

Country-Level Carbonation CO₂ uptake in cement-containing products

- Tier 1 is used as first estimate
- Provides (conservative) estimates for:
 - Use stage (existing structures)
 - End-of-life stage (demo, crushing, stockpiling)
 - Secondary use (recycling)
- Uptake values related to calcination emissions from annual clinker consumption
 - (production export + import)

B 2309 Tier 1 approach

- CO₂ uptake for existing concrete structures, national basis
- Use annual clinker consumption (20-year average)
- Portland cement maximum theoretical CO₂ uptake = 0.49 kg CO₂/kg cement (BB EN 16757)
- **Use stage** estimates 20% uptake (alternative A):
 - 0.20 x (calcination emissions)
- **EOL and secondary use** estimate 2% and 1% uptake, respectively:
 - (0.02 + 0.01) x (calcination emissions)

B 2309 Tier 1 approach

- For 10,000,000 metric tons (10 MMT) portland cement production:
 - 0.49 kg CO₂/kg cement (BB EN 16757)
 - 10,000,000 x (0.49) = 4,900,000 kg CO₂
- Use stage (alternative A):
 - 0.20 x (calcination emissions) = 0.20 x 4,900,000 = 980,000 kg CO₂
- EOL and secondary use (3%) = (0.02 + 0.01) x (calcination emissions):
 - 0.03 x 4,900,000 = 147,000 kg CO₂
- 10 MMT of cement absorbs 980,000 + 147,000 = 1,127,000 = 1.13 MMT CO₂
- Or about 11.3% of the calcination emissions over the life of the concrete made with this amount of cement

Ongoing/Suggested Research, Data Gaps

- CMHA research will better quantify rate of reaction and total uptake for CMU
- Similar research could benefit other cement-based materials
- As for test methods to quantify uptake, NIST is busy...

13 Week

Set 6 4 Week

Set 6 26 Week

NIST LCCCC Work on Carbonation

- Low Carbon Cements and Concretes Consortium, 2022
- Develop traceable & accurate measurement techniques
- Standardized techniques to measure carbon(ate) in cement-based materials
- Inform guides, standards, specifications
- 4 Work Groups:
- WG Quantifying Carbonates
- WG Specifications
- WG Carbon Accounting
- WG Novel Materials, Products, and Processes

Some Current & Potential Test Methods to Quantify Uptake

- Thermogravimetric analysis (TGA)
- Infrared analysis (IR)
- Mass spectrometry of gas liberated
- X-ray diffraction (XRD or XRD + TGA)
- Phenolphthalien (qualitative)
- Furnace or combustion methods
- Fourier transform infrared spectroscopy (FTIR)
- Chemical methods
- X-ray fluorescence (XRF)
- Others

PCA Policy Priorities for Carbonation

- Recognition and validation
 - Establish an accepted method for calculating CO₂ uptake
- Life cycle consideration
 - Recognize and quantify carbonation in whole-life LCAs and sustainable procurement policy
- Research the life cycle carbonation benefits of concrete materials
 - Include end-of-life recycling/treatment

KEY POLICY LEVERS

Thank you!

Jamie Farny Portland Cement Association jfarny@cement.org

