CO2 Derived Carbon Nanotube in 3D Printable Cementitious Composites: Dispersion and Properties

Ehsan Moseni¹, Reese Sorgenfrei¹, Anna Douglas², Hongyu Zhou¹

¹University of Tennessee, Knoxville

² SkyNano Technologies LLC

Outline

- Introduction
- CO₂ derived MWCNT and nanostructured carbon
- A novel technique to disperse MWCNT in cementitious composites
- Formulation of functional cementitious composite containing CO₂-derived MWCNT
- Conclusions

Introduction

- Cement and concrete manufacturing is carbon intensive
- Beneficial utilization of CO₂ from cement manufacturing can be an effective means of decarbonization
- CO₂ emitted from the manufacturing process can be used as feedstock for value-adding products

Utilizing CO₂-derived CNT

The SkyNano technology of MWCNT production is based on molten salt electrolysis, where carbonateion reduction occurs at the cathode and oxide-ion oxidation occurs at the anode. The captured CO_2 is then used to chemically regenerate the molten salt electrolyte by converting excess oxide ions back to carbonate ions.

CONCRETE

CONVENTIO

The system may be run in semi-batch or continuous mode with the only inputs as CO_2 (atmospheric or a concentrated source) and electricity.

Utilizing CO₂-derived CNT

CNT Dispersion in Cementitious Materials

FA-L0 Slurry

CNTs agglomerate and do not 'coat' the SCM surface

CONVENTION

FA-L1 Slurry

Well dispersed with long 'shelve life'

FA-L1 Slurry

Well dispersed with long 'shelve life'

FA-L1 Slurry

Well dispersed with long 'shelve life'

Reaction in Cementitious Materials Sytem

Reaction with Cement

Pore spaces

(aci) CONCRETE

MWCNT/CZ Treated SCM

MWCNT/CZ treated unconventional SCMs acting as dispersant to improve MWCNT/CZ dispersion while densifying the microstructure of cement binder

Reaction in Cementitious Materials Sytem

Mix proportions of final mixtures in kg/m³

	Mix ID	Cement	Water	SCM	PA Latex	CNT	Surfactant
	SF-control	95	30	5	0	0	0
	SF-L0	95	30	5	0	0.5	0.5
SCM Type	SF-L1	94	30	5	1	0.5	0.5
Silica fume	SF-L2	93	30	5	2	0.5	0.5
	SF-L5	90	30	5	5	0.5	0.5
	SF-L10	85	30	5	10	0.5	0.5
	FA-control	90	30	10	0	0	0
	FA-L0	90	30	10	0	0.5	0.5
SCM Type	FA-L1	89	30	10	1	0.5	0.5
Flv ash	FA-L2	88	30	10	2	0.5	0.5
	FA-L5	85	30	10	5	0.5	0.5
	FA-L10	80	30	10	10	0.5	0.5

Hydration Kinetics

225.12

202.54

223.53

200.56

8.43

8.85

9.20

11.05

4.50

4.53

4.51

3.71

SF-L0

SF-L1

SF-L2

SF-L5

Hydration Kinetics

	Peak		Total hydration				
Mix ID	Heat flow (mW/g cement)	Time (h)	energy (J/g cement)				
FA-control	3.62	9.47	206.56				
FA-L0	3.78	8.75	211.53				
FA-L1	3.80	8.65	212.39				
FA-L2	3.29	9.62	202.46				
FA-L5	2.85	12.67	192.42				
FA-L10	1.59	27.53	146.85				
THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE							

Hydration Kinetics

- The introduction of dispersed CNTs resulted in some acceleration in the primary heat evolution peaks.
- For SF-L0, the maximum of 0.98 mW/g s⁻¹ was reached at 4.28 hours of hydration, compared to 0.89 mW/g s⁻¹ at 4.52 hours for the reference mix, indicating an acceleration of 14.4 minutes.
- For FA-L0, the maximum of 0.81 mW/g s⁻¹ occurred at 4.05 hours of hydration, compared to 0.73 mW/g s⁻¹ at 4.67 hours for the reference mix, indicating an acceleration of 37.2 minutes.
- This acceleration was followed by a less pronounced shoulder at approximately 18 hours, is correlated with sulphate depletion.

CONCRETE

CONVENTI

- Larger peaks at 1098 and 1408 indicates that CNT can inhibit the carbonation of cementitious composites to some extent
- Sharper intensity at 3392 indicates CNT accelerates the hydration of the cement and produces more calcium hydroxide crystals which can react with the carbon dioxide in the air to form calcium carbonate. It also indicates the increase of crystalline calcium hydroxide.

SF-L0 Cementitious Nanocomposite

FA-L0 Cementitious Nanocomposite

SF-L1 Cementitious Nanocomposite

CONVENTION

Synergistic Effect of SCM and PA Polymer

Utilizing CO₂-derived CNT in 3D Printable Cementitious Composites

Utilizing CO₂-derived CNT in 3D Printable Cementitious Composites

Mix ID	Cement	Water	CNT	sand	SP	Cellulose Ether
Control	100	30	0	100	0.2	0.1
0.1CNT	100	30	0.1	100	0.2	0.1
0.2CNT	100	30	0.2	100	0.2	0.1
0.5CNT	100	30	0.5	100	0.2	0.1
1CNT	100	30	1	100	0.2	0.1

Hydration Kinetics

(aci) CONCRETE CONVENTION

Printability

Mechanical Properties

Electric Conductivity

(aci) CONCRETE

Microstructure

Conclusions

- A novel strategy was proposed to effectively disperse CNT and other forms of nanostructured carbon (e.g., graphene) in cementitious composites using SCMs as 'carriers'
- The synergistic effects of SCMs, dispersants (e.g., surfactants), and PA latex was investigated.
- The feasibility of utilizing CO₂-derived CNTs in 3D printable cementitious composites was explored
- The effects of C-CNTs on hydration kinetics, fresh properties (e.g., rheology and flowability), hardened properties (mechanical and electrical), and printability are investigated.

Conclusion

This work is partially sponsored by the U.S. Department of Energy (DOE) Industrial Efficiency and Decarbonization Office (IEDO) and Office of Navel Research (ONR) through project N68335-23C-3047.

The authors would also like to acknowledge:

Dr. David Wood, SkyNano LLC Dr. Chengqing Qi, Ash Grove Dr. Peyman Zandifeaz, University of Tennessee Knoxville Dr. Heather Willauear, US Naval Research Laboratory

