

COLLEGE OF ENGINEERING School of Civil and Construction Engineering

The Science Behind PLC – A Thermodynamic perspective

O. Burkan Isgor and W. Jason Weis

OPC hydration – a review

Type I / II OPC

Azad et al. 2017

Type I/II OPC + limestone

At 90 days of hydration

- Ettringite and hemi/monocarbonate form instead of monosulfate
- Similar C-S-H content; less CH; similar pH

Reacted phases vs. limestone %

- OPC started to include some limestone (2-3%) around 2004
- A lower porosity (higher strength) is observed due to ettringite and hemi/monocarbonate phases
- PLC is typically finer than OPC, which allows comparable strength to OPC

PLC + reactive silica vs. alumina

PLC + reactive silica vs. alumina

The role of reactive alumina

The role of reactive alumina

 Mixtures with limestone contents higher than 15% could give similar properties as PLC when SCMs with highly reactive alumina are used (e.g., some calcined clays, etc.)

PLC + SCM

OSU Report to CALTRANS, 2021

Oregon State University College of Engineering

Thermodynamic modeling framework to predict mixture properties

Step 1 - Characterize materials: Maximum degree of pozzolanic reactivity (DOR*) Component PLC SCM 0.5 M 0.5 M $SCM + CH + H_2O \rightarrow \frac{reaction}{products} + \Delta$ KOH KOH 48.20 SiO₂ 20.30 19.10 Al_2O_3 4.80 Reaction IBM products 3.30 5.70 Fe₂O₃ Unr. IBM 14.60 CaO 63.50 CH Measure CH Measure Heat CH Na₂O_{eq} 0.78 0.51 Consumed Released MgO 0.80 3.80 900 3.10 1.00 SO₃ 800 100% 100%CaCO₃ 13.00 700 80% **Specific Gravity** 3.09 2.66 80% $DOR^* = \frac{Q_{\infty} - c_1 \cdot CH_{consumed}}{c_2}$ (unitless) 60% 300 350 **Blaine Fineness** 405 200 20% (m^2/kg) --Al₂O₃ in 0.5N KOH 100 -■-SiO₂ in 0.5N KOH 20% **DOR*** N/A 43% 0 20 40 60 80 100 120 140 160 180 200 220 Calcium Hydroxide Consumption (g/100 g SCM)

Isgor / Weiss - 2024 ACI Spring Convention (NOLA)

March 26, 2024

Step 2 - Define the performance criteria:

Concrete Application	Bridge Deck	Midwest Pavement	Foundation
Exposure Class /	ACI 318: F3, S0, W0, C2	AASHTO PP-84	ACI 318: F0, S1, W1, C0
Durability	Resistance to chloride ingress,	CaOxy and FT damage	Moderate sulfate and ASR
Requirement	corrosion, and FT	specified by SHA	resistance
Strength (56-day)	5000 psi (34 MPa) (min)	4225 psi (29 MPa) (min)	4000 psi (27 MPa) (min)
F Factor (56-day)	375 (min)	270 (min)	200 (min)
CH (56-day)	20g/100g binder (max)	20g/100g binder (max)	N/A
pH (56-day)	12.8 (min)	N/A	13.6 (max)
Time to Critical Sat	30 years (min)	30 years (min)	N/A

Step 3 – Predict mixture properties satisfying performance:

Concrete Application	Midwest Pavement
Exposure Class /	AASHTO PP-84
Durability	CaOxy and FT damage
Requirement	specified by SHA
Strength (56-day)	4225 psi (29 MPa) (min)
F Factor (56-day)	375 (min)
CH (56-day)	20g/100g binder (max)
pH (56-day)	N/A
Time to Critical Sat	30 years (min)

Step 3 – Predict mixture properties satisfying performance:

Concrete Application	Midwest Pavement
Exposure Class /	AASHTO PP-84
Durability	CaOxy and FT damage
Requirement	specified by SHA
Strength (56-day)	4225 psi (29 MPa) (min)
F Factor (56-day)	270 (min)
CH (56-day)	20g/100g binder (max)
pH (56-day)	N/A
Time to Critical Sat	30 years (min)

Step 3 – Predict mixture properties satisfying performance:

Concrete Application	Midwest Pavement
Exposure Class /	AASHTO PP-84
Durability	CaOxy and FT damage
Requirement	specified by SHA
Strength (56-day)	4225 psi (29 MPa) (min)
F Factor (56-day)	270 (min)
CH (56-day)	20g/100g binder (max)
pH (56-day)	N/A
Time to Critical Sat	30 years (min)

Step 4 – Find the feasible space:

Concrete Application	Midwest Pavement
Exposure Class /	AASHTO PP-84
Durability	CaOxy and FT damage
Requirement	specified by SHA
Strength (56-day)	4225 psi (29 MPa) (min)
F Factor (56-day)	270 (min)
CH (56-day)	20g/100g binder (max)
pH (56-day)	N/A
Time to Critical Sat	30 years (min)

Step 5 – Optimize for CO₂ footprint and/or cost:

Conclusions

- PLC produces concrete with similar chemical composition to OPC concrete
- Ettringite and hemi/monocarbonate form instead of monosulfate, as a result porosity typically decreases
- PLC is typically finer than OPC, which allows comparable strength to OPC
- Limestone in PLC has synergetic reactions with reactive alumina from SCMs
- Mixtures with limestone contents higher than 15% could give similar properties as PLC when SCMs with highly reactive alumina are used (e.g., some calcined clays, etc.)
- Proportioning PLC+SCM mixtures for a defined performance criteria is possible through the developed framework
- This framework also allows optimization for CO₂ footprint and/or cost

O. Burkan Isgor Burkan.lsgor@oregonstate.edu