

Fracture Energy of GFRP-Concrete Bonded Interface after Sustained Loading in Natural Environments

Jae Ha Lee¹, Kivanc Artun², Charles E. Bakis³, Maria M, Lopez⁴, and Thomas E. Boothby³

¹National Korea Maritime & Ocean University, Busan, S. Korea ²Ghafari Associates, Chicago, IL, USA ³Pennsylvania State University, University Park, PA, USA ⁴Modjeski and Masters, Mechanicsburg, PA, USA

Durability of externally bonded FRP sheets: What do we know?

- Water
 - Plasticization
 - Hydrolysis
- Elevated temp. (not fire)
 - Post cure
 - Creep

- Freeze/thaw
 - Micro-cracking of concrete
- Ultraviolet
 - Post cure
 - Chain shortening

What about...

- natural outdoor environment?
- sustained loading?

Evaluate effects of multi-year sustained loading and environmental exposure on Mode II interfacial fracture energy of GFRP/concrete bond

- Unconditioned beams: 0 time
- Conditioned beams: 6 and 13 years with sustained loading in indoor and outdoor environments

Selection of Bond Specimen

Simple FRP/concrete bond specimen that can be left unattended, <u>under load</u>, for many years

Aim to test specimens to failure at multi-year intervals

Materials

Glass fiber (uni-directional)

Aerial weight, g/m²	900
Equivalent thickness, <i>t_f</i> , mm	0.353
Mean tensile modulus, <i>E_f</i> , MPa	72,400
Design ^(a) tensile strength, <i>F_{fu}</i> , MPa	1,520
Design ^(a) rupture strain, ε _{fu} , %	2.10

^(a) Mean minus 3 standard deviations

Concrete

28-Day Target Strengths: 21, 41 MPa

Course & fine aggregates

No air entrainment admixture

Ероху

	Primer	Putty	Saturant
Mean tensile modulus, <i>E_m</i> , MPa	720	1,800	3,000
Mean tensile strength, F_m , MPa	17	15	55

FRP Strengthened Prisms

- Designed to fail by debonding
- A 6-mm-deep starter notch was saw-cut
- The notch was filled with foam
- The soffit was ground and cleaned
- Over a 3-day period:
 - 2 coats of primer 2 coats of putty 1st coat of saturant 1 layer of dry unidirectional fibers 2nd coat of saturant (No UV protection)
- Notch extended to a "pre-crack" by 3-pt. bending

Sustained Loading

- Beams placed in 4-pt bending rigs with springs
- Sustained fiber strain ~ 13% of the guaranteed rupture strain (2730 μm/m)

Indoor condition (21-23°C)

Outdoor condition (during winter)

Outdoor condition (during summer)

Outdoor Weather in Central Pennyslvania

- "Warm-summer humid continental" climate -- Group Dfb according to the Köppen-Gieger climate classification system
- ~65 freeze/thaw cycles per year (~840 over 13 years)

Bond Testing and Concrete Testing After Bond Testing

3-point bend test

• Servo-hydraulic or screw-driven load frame in stroke control

Strain measurement on GFRP

- Photoelastic coatings (0 yr)
- Digital image correlation (6, 13 yrs)

• 3 resistance strain gages near notch

Concrete compression strength test after removal of GFRP

• Three or four 70×112 mm cylinders

Typical Failure Mode

Debonding, followed by GFRP rupture @ notch or secondary crack

Mix of adhesive failure and concretecohesive failure

Note: In this paper, our focus is on the onset and early part of bebonding process

Fracture Energy Measurement Method

Zhou Y., Wu Y., and Yun, Y. (2010). Analytical modeling of the bond-slip relationship at FRP-concrete interfaces for adhesively-bonded joints, *Composites: Part B*, **41**(6), 423-433.

Results of Concrete Cylinder Testing

We can account for change in concrete strength using eqn. for G_f by Lu et al. (2005)

$$G_F = 0.308 \left(\frac{2.25 - b_f/b_c}{1.25 - b_f/b_c}\right) \sqrt{f_t}$$

- *f_t* is concrete tensile strength at the time of beam testing [MPa]
- $b_c \& b_f$ are widths of concrete & FRP [mm]

Lu, X. Z., Teng, J. G., Ye, L. P. and Jiang, J. J. (2005). Bond–slip models for FRP sheets/plates bonded to 12 concrete, Engineering Structures, 27(6), 920-937.

Measured G_F vs. calculated fracture energy according to Lu et al. 2005

- Unconditioned: measured G_F > calculated G_F because Lu eqn. was calibrated with single lap shear data
- Outdoor, 13 Years: additional variation in measured G_F attributed to sustained load/environment and variable locations where G_F measured ¹³

Measured G_F vs. G_F -Lu $\left(G_F = 0.308 \left(\frac{2.25 - b_f/b_c}{1.25 - b_f/b_c}\right)\right)$

Same observation: several factors affect measured G_F -- concrete strength, environment, sustained loading, and position where G_F measured

Variation of experimental G_F with distance from pre-crack

- G_F increases with distance from pre-crack
 - Sustained bond stress near pre-crack decreases G_F?
 - Additional dissipative mechanisms increase G_F as de-bonded region grows?
- Subsequent analysis of fracture energy:
 - Determine G_F at $x_0 = 60$ mm from pre-crack, using interpolation
 - Divide by G_F by G_F -Lu (2005) to minimize effect of concrete strength

Normalized G_F 60 mm from pre-crack

*G-Out-1-NS [2018] is a GFRP specimenthat was outdoors for 13 years without sustained load

- No obvious effect of direct/indirect UV exposure (limited data)
- Normalized G_F increased @ 6 years and decreased @ 13 years

Normalized G_F 60 mm from pre-crack: Summary

Conclusions

- Compared to 0-time beams, the 6-year beams exhibited an increase in normalized fracture energy
 - More for indoor (+81%) than outdoor (+12%)
 - This is believed to be due to beneficial stress redistribution within the bond transfer zone
- Compared to 0-time beams, the 13-year beams exhibited a decrease in normalized fracture energy
 - More for outdoor (-38%) than indoor (18%)
 - This is believed to be due to interfacial weakening at the GFRP/concrete interface
- No evidence of ultraviolet degradation even though no UV protection used

Caveats: these conclusions are limited to the materials, specimen preparation methods, sustained exposure conditions, and bond test method used in this investigation

For more detailed information about this work:

- Lee, J., Kim, J., Bakis, C. E., & Boothby, T. E. (2021). Durability assessment of FRPconcrete bond after sustained load for up to thirteen years. *Composites Part B: Engineering*, **224**, 109180.
- Lee, J., Artun, K., Bakis, C. E., Lopez, M. M., & Boothby, T. E. (2023). Changes in fracture energy at FRP-concrete interfaces following indoor and outdoor exposure with sustained loading. *Construction and Building Materials*, 392, 131905.

Acknowledgements

- U.S. National Science Foundation Grants 0219484 and REU
- U.S. National Science Foundation Grant CMMI-0826461
- Korea National Research Foundation (한국연구재단 국제교류협력사업) (R1A1A1A05018602)
- Undergraduate students: Marcus Whitaker, Sally Gimbert, Daniel Fuhrman, Phillip Regal, and Jinhoo Kim