

Out of plane strengthening of masonry walls with inorganic composites

Marta Del Zoppo¹, Marco Di Ludovico¹, Alberto Balsamo¹ and Andrea Prota¹

¹DEPT. OF STRUCTURES FOR ENGINEERING AND ARCHITECTURE (DIST)

UNIVERSITY OF NAPOLI "FEDERICO II", ITALY

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

New Orleans, Louisiana, USA March 23-24, 2024 www.frprcs16.com

❑ **Introduction**

Unreinforced masonry (URM) walls are prone to failure when subjected to in-plane and out-ofplane loads caused by earthquakes.

Partial or total collapses of existing masonry walls during earthquakes result in significant economic losses, severe injuries and loss of human lives.

Effective and sustainable strategies to enhance the safety of such existing assets are needed in order to have resilient structures.

❑ **Introduction**

Composite materials help in reducing the vulnerability of URM walls to in-plane and out-of-plane failures

➢ Externally bonded FRPs ➢ FRCM/FRM

❑ Compatibility of resins with masonry support ❑ Special care during the application process

❑ **Introduction**

Different inorganic strengthening systems:

❑ **In-plane strengthening**

In past years, 149 diagonal compression tests were performed at University of Naples Federico II, out of which:

❖ 83 Tuff masonry panels (Neapolitan tuff)

❖ 36 rubble stone masonry

panels (L'aquila)

❖ 30 clay brick masonry panels (Emilia-Romagna)

-
-

New Orleans, Louisiana, USA

March 23-24, 2024

www.frprcs16.com

New Orleans, Louisiana, USA March 23-24, 2024 www.frprcs16.com

❑ **In-plane strengthening**

Different strengthening configurations have been investigated

Tuff strengthened panels:

❑ **In-plane strengthening**

The effectiveness of different strengthening solutions fon enhancing the in-plane shear capacity of tuff masonry panels has been evaluated comparing the ratio

$$
19 \qquad \tau = 0.707 \cdot \frac{P}{A_n}
$$

Where:

- \triangleleft τ_{max} the experimental peak shear stress computed for the reinforced panel
- $\cdot \bullet$ τ₀ the average experimental peak shear stress of the corresponding URM panels

REINFORCED

URM

New Orleans, Louisiana, USA

March 23-24, 2024

www.frprcs16.com

❑ **In-plane strengthening**

Experimental data have been used to calibrate amplification factors for masonry shear capacity with different strengthening solutions:

❖ **Italian guidelines CNR DT 215 - 2018**

In case of 1 side strengthening it is mandatory to use anchors!

CONSIGLIO NAZIONALE DELLE RICERCHE

COMMISSIONE DE STUDIO PER LA PREDISPOSIZIONE E L'ANALIS DI NORME TRINICHE ESLATIVE ALLE COSTRUZIONE

Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a Matrice Inorganica

❑ **Out-of-plane strengthening**

Investigate the effectiveness of FRCM/FRM for the out-of-plane (OOP) strengthening of masonry walls through quasi-static testing

Selected failure mechanism

Simulated static scheme (4 point bending test+compressive axial load) 欺 \leftarrow F/2 $-F/2$ *Bending moment diagram* \leftarrow F/2 $-$ F/2 芤 울

New Orleans, Louisiana, USA March 23-24, 2024 www.frprcs16.com

❑ **Experimental program**

➢ Design of the set-up and boundary conditions

New Orleans, Louisiana, USA THE I March 23-24, 2024 www.frprcs16.com

❑ **Experimental program**

➢ Two solid clay brick and two tuff masonry walls are presented:

❑ **Experimental program**

➢ FRM: lime-based mortar with embedded short glass fibres (length 19mm, volumetric ratio less than 2%)

FRM mean compressive strength 23 MPa

FRM mean tensile strength 0.7 MPa

Mechanical properties

. . \mathbb{Z} and \mathbb{Z}

❑ **Experimental program**

$_0$ LVDT E + laser118 \sim LVDT D $\overline{}$ o laser 114 \vert lwi l 'LVDT C OLVDTK **LVDT WI08** LVDT WA420 LVDTW18 $LVDI M_o$ 885 **LVDT B16** I LVDT J 590 \circ laser 116 LVDT B19 olaser 115 290 1160

New Orleans, Louisiana, USA

March 23-24, 2024

www.frprcs16.com

Instrumentation

New Orleans, Louisiana, USA March 23-24, 2024 www.frprcs16.com

❑ **Discussion of experimental results**

➢ Clay brick panels: failure mode

 $-C$ _URM

C_FRM_2S

Bridging effect of the fibres

Deformed shapes (F=30kN) 1000

❑ **Discussion of experimental results**

➢ Tuff panels: failure mode

T_URM T_FRM_2S

❑ **Discussion of experimental results**

➢ OOP capacity curves at the mid-span of the panels

 \bar{t}

 $\beta \cdot c_u$

Flexural capacity (no steel reinforcement):

2

 $+ Ff$

 \boldsymbol{t}

2

2 −

❑ **Proposal for analytical formulation**

 \triangleright Based on the approach currenlty adopted for FRCM (ACI 549)

$$
Ff = tf \cdot Ef \cdot \varepsilon_f
$$

Thickness of the FRM layer in tension

❑ **Proposal for analytical formulation**

 \triangleright Based on the approach currenlty adopted for FRCM (ACI 549)

 $F f = t f \cdot E f \cdot \varepsilon_f$

Peak tensile stress (f_f) of the FRM

) of the FRM FRM in compression Is not considered, as for FRCM

 \bar{t}

 $\beta \cdot c_u$

Flexural capacity (no steel reinforcement):

2

 $+ Ff$

 \boldsymbol{t}

2

2 −

❑ **Proposal for analytical formulation**

 \triangleright Based on the approach currenlty adopted for FRCM (ACI 549)

 $F f = t f \cdot E f \cdot \varepsilon_f$

Peak tensile stress (f_f) of the FRM

) of the FRM FRM in compression Is not considered, as for FRCM

 \bar{t}

 $\beta \cdot c_u$

Flexural capacity (no steel reinforcement):

2

 $+ Ff$

 \boldsymbol{t}

2

2 −

❑ **Proposal for analytical formulation**

 \triangleright Based on the approach currenlty adopted for FRCM (ACI 549)

Flexural capacity (no steel reinforcement):

$$
Mn = Fm\left(\frac{t}{2} - \frac{\beta \cdot c_u}{2}\right) + Ff\frac{t}{2}
$$

Comparison:

The analytical calculation provides a safe estimation of the flexural capacity of FRM strengthened masonry panels

❑ **Conclusive remarks**

- The results of this preliminary experimental campaign showed that the failure mode of bare and strengthened specimens was quite similar, except for the tuff URM wall. In all cases, the failure was governed by flexure.
- \triangleright The FRM increased the out-of-plane capacity and reduced the out-of-plane deformation of the panels. For the clay brick masonry walls the capacity was enhanced by 83% for the double-side configuration with respect to the bare wall. Conversely, for the tuff walls the capacity enhancement was about 12% due to the effect of the FRM.
- ➢ A proposal of analytical approach was used to compute the flexural capacity of FRM strengthened walls, providing an underestimation of the experimental data of 16-17%.
- ➢ From these preliminary results, the FRM appears a sound technique for the out-of-plane strengthening of masonry walls and further data are needed to validate design equations.

FUTURE DEVELOPMENTS

➢ Further experimental tests are needed; Comparison with FRCM strengthening solution is currently under investigation

MAR Photo It

❑ **Ongoing research….**

New Orleans, Louisiana, USA

March 23-24, 2024

u frarcelf com

Thank you!

Prof. MARCO DI LUDOVICO

University of Naples Federico II Associate Professor Department of Structures for Engineering and Architecture Email: diludovi@unina.it

Hew Orleans, Louisiana, USA

March 23-24, 2024

www.frprcs16.com