

Use Of CFRP Rebars As Retrofitting System For Masonry Panels

F. Ferretti, A. R. Tilocca, A. Incerti, S. Barattucci and M. Savoia

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

aci

CONVEN¹

Motivation and objective

- Seismic vulnerability of masonry
- Possibility of using high-performance materials, such as Fiber Reinforced Polymers (FRP) for the strengthening of masonry elements

INNOVATIVE STRENGTHENING SYSTEM

- Applicable to load-bearing elements and infills
- Improvement of in-plane and out-of-plane behavior
- Interventions executed from the outside (no interruption of use)

Study on the **efficiency** in improving the **shear behaviour** (sliding and diagonal cracking) of **single-leaf masonry** elements

Description of the strengthening system

DRUM Università di Bologna

Experimental campaign

<u>Masonry</u>

- Clay-brick single-leaf masonry panels:
 - Bricks: UNI 12×25×6 cm³
 - Cementitious mortar

Strengthening system

- Carbon FRP rebars (φ16)
- High-performance cementitious mortar
- Multi-axial carbon FRP sheet (400 g/m²)

Test typologies on wall panels

- Direct shear test
- Diagonal compression test

Material	<i>f</i> c [MPa]	<i>ີ່ງ</i> ຢ [MPa]	
Mortar	4.35	2.36	
Brick UNI 12×25×6	42.60	/	

Material	<i>f</i> ₅ [MPa]	<i>f_f⊧</i> [MPa]	f _t [MPa]	<i>f₅</i> [MPa]	E [GPa]	ε [%]
Mortar	18.78	7.66	-	-	-	-
CFRP rebars	-	-	845	262	135	-
CFRP sheets	-	-	4030	-	359	1.44

- *fc*: compressive strength
- *ff*: flexural strength
- *ft*: tensile strength

- *fs*: shear strength
- E: elastic modulus
- ε: ultimate deformation

Direct shear tests Description of tested samples

Strengthening layouts:

- 1. n.2 unreinforced (URM) samples
- 2. n.2 samples reinforced only with mortar into the grooves
- 3. n.2 samples reinforced with mortar and rebar into the grooves
- 4. n.1 sample with the complete reinforcing layout (CFRP rebar + mortar + CFRP sheet)

ALMA MATER STUDIORUN Università di Bologn.

Direct shear test Setup

Test protocol

- 1. Application of vertical stress \rightarrow 0.20 MPa
- 2. Application of the horizontal load
- 3. Sliding failure
- 4. Increment of vertical stress \rightarrow 0.4 0.6 MPa
- 5. Application of the horizontal load

Side A

Side B

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Direct shear test Results

Force vs displacement graphs – vertical stress: 0.2 MPa

Sample code	σ [MPa]	<i>F_{max}</i> [kN]	Increment [%]	<i>fv</i> [MPa]	F _{max,residual} [kN]	fv,residual [MPa]
URM_1	0.2	50.7	-	0.42	-	-
	0.6	-	-	-	78.7	0.65
URM_2	0.2	51.8	-	0.43	-	-
	0.4	-	-	-	85.3	0.71
	0.6	-	-	-	89.2	0.74
Mortar_1	0.2	50.6	-	0.42	-	-
Mortar_2	0.2	67.0	31	0.56	-	-
Mortar+Rebar _1	0.2	78.7	54	-	-	-
Mortar+Rebar_2		77.4				
	0.2		54	-	-	-
Complete layout	0.2	101.6	98	-	-	-

- Strength increment obtained
- Shift in failure mode (see next slide)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Direct shear tests

Failure modes

- Failure Mode A: sliding
- Failure Mode B: out-of-plane rotation of loaded brick
- Failure Mode C: like B + splitting failure of loaded brick

Mortar and CFRP rebars (C)

ALMA MATER STUDIORUM Università di Bologna

Diagonal compression tests Description of tested samples

Strengthening layouts:

- n.2 unreinforced (URM) samples;
- n.2 samples strengthened with the complete layout (CFRP rebar + mortar + CFRP sheet)

Diagonal compression tests Strengthening procedure

1. Construction of the wall panels (bricks already cut to prevent undesired failure during the realization of grooves due to slenderness of the panels)

- 2. CFRP rebars insertion
- High-performance mortar application
- 4. Closing of grooves with mortar
- 5. Primer application
- Multi-axial CFRP sheets application

Diagonal compression tests Setup

- Displacement-controlled apparatus (capacity of 500 kN)
- Imposed displacement rate: 0.02 mm/s
- Diagonal displacements measured using linear potentiometers (50 mm stroke)
- Digital Image Correlation

State of stress in the centre of the panel (elastic solution):

Elastic

σ

Diagonal compression tests

Sample code		Increment	f_t	T _{el} [MDa]	γ _{max}	G
	נגואן	[/0]	្រមាកឲ្យ	נועודמן	[-]	נועודמן
URM_1	51.7	-	0.19	0.39	0.0005	1335
URM_2	126.7	-	0.46	0.96	0.0005	2890
Strengthened_1	180.7	103	0.65	1.38	0.0032	1758
Strengthened_2	148.6	67	0.54	1.13	0.0033	2005

Diagonal compression tests Failure modes

Stair-stepped crack (sliding phoenomenon)

URM

Strengthened panels

Multiple cracks

Local debonding of CFRP sheets

No damage to CFRP rebars

Diagonal cracking (very fragile)

Diagonal compression tests Digital Image Correlation

Strengthened sample:

DIC technique applied on the unreinforced side

exx [um/m] - Lagrange

55000

51343.8

47687.5

Conclusions

- Innovative strengthening technique: use of CFRP rebars and high-strength mortar (into grooves) and CFRP sheets (on the surface)
- Investigation of the shear behaviour of strengthened masonry elements → direct shear and diagonal compression tests
- Strength improvement and change in failure modes obtained (sliding failure prevented)

Future works

Tests on **full-scale walls** with different geometries to verify the effectiveness against **flexural and shear failure** (work in progress..)

ALMA MATER STUDIORUM Università di Bologna

THANK YOU FOR THE ATTENTION

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

New Orleans, Louisiana, USA

March 23-24, 2024

www.frprcs16.com