

Experimental efficiency of FRP bars as injected anchors for masonry structures

Francesca Ceroni¹, Alberto Balsamo², and Marco Di Ludovico²,

¹DEPARTMENT OF ENGINEERING,

UNIVERSITY OF NAPOLI "PARTHENOPE"

²DEPT. OF STRUCTURES FOR ENGINEERING AND ARCHITECTURE (DIST)

UNIVERSITY OF NAPOLI "FEDERICO II", ITALY

CONCRETE

CONVENT

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

➢ **Seismic Vulnerability of existing masonry buildings**

- ➢ *Damage assessment*
- **SIMPLE OVERTURNING COMPOUND OVERTURNING Mechanism I Mechanism II**

- ➢ The seismic vulnerability of masonry buildings to out-of-plane failure mechanisms is frequently related to poor connections between orthogonal walls and between walls and horizontal diaphragms (lack of box behavior);
- **Marco Di Ludovico, New Orleans, USA, 03/24/2024** \triangleright Experimental program goal: to validate the effectiveness of innovative injected anchors based on the use of composite systems (grouted anchors made by hollow CFRP pultruded carbon tubes wrapped with longitudinal and spiral stainless steel fabrics)

- ➢ **Seismic Vulnerability of existing masonry buildings**
	- ➢ *Seismic Upgrade: Traditional interventions to avoid out-of-plane mechanisms*
		-
		- *Steel Ties RC/Steel confining elements Injected anchors*
-

➢ **Seismic Vulnerability of existing masonry buildings**

➢ *Seismic Upgrade: Injected anchors, field case example*

Caserma dell'arma , Amatrice 2016

- ➢ **Seismic Vulnerability of existing masonry buildings**
	- ➢ *Seismic Upgrade: Traditional vs. Innovative solutions*

Advantages

- ➢ Reduced invasiveness
- ➢ Installation from exterior
- \triangleright Easy and fast execution
- ➢ No mass increase

FRP rebars

➢ High corrosion resistance ➢ Low maintenance

➢ **Experimental Program : Full scale element**

➢ *Seismic Upgrade & Exp. Validation*

Full Scale Experimental tests on T-Shape masonry specimen

Weak connection between orthogonal walls

Out-of-plane experimental behaviour of T-shaped full scale masonry wall strengthened with composite connections

CrossMark

G. Maddaloni^{*}, M. Di Ludovico, A. Balsamo, A. Prota

Department of Structures for Engineering and Architecture, University of Naples "Federico II", via Claudio, 21, 80125 Naples, Italy

Marco Di Ludovico, New Orleans, USA, 03/24/2024

Comp. Part B: 2016

➢ **Experimental Program: Full scale element**

➢ *Seismic Upgrade & Exp. Validation*

Monotonic test on "As Built" Specimen

LATERAL VIEW - LEFT SIDE

Intermediate failure mechanism
Mechanism II

Mechanism I

➢ **Experimental Program: Full scale element**

➢ *Seismic Upgrade & Exp. Validation*

Injected anchors: innovative solution to overcome typical problems of corrosion due to the use of steel bars as a connection system of masonry orthogonal walls

Hollow pultruded carbon fibre tubes (Carbotube)

Diameter 10 mm Tensile Strength 3100 Mpa Elastic Modulus 170 Gpa Ultimate Strain 1.6%

Stainless steel fabrics

Average tensile strength 3600 N **Injected Anchor**

binder (based on lime and Eco-Para-Parahato)ico, New Orleans, USA, 03/24/2024 Injection of superfluid, cement free,

➢ **Experimental Program: Full scale element**

➢ *Seismic Upgrade & Exp. Validation*

 \geq Out of plane capacity increase: $+175\%$ the horizontal force

➢Ultimate drift and the energy dissipation capacity increase:78% and 250%

➢The strengthening technique is a sound alternative to traditional steel based connections

➢It is a non-invasive technique and the use of cement-free mortar injections make the system suitable also in the case of historical buildings.

age

➢ **Experimental Program: Pull out tests**

➢ *Seismic Upgrade: Design formulations*

Mostly related to steel rebar

➢ **Experimental Program: Pull out tests**

➢ *Test Setup*

- Anchors embedded 250 mm, holes diameter 25 mm.
- 0.5 mm/min
	-

■ Displ. Control ■ Confinement pressure 0.4 MPa

➢ **Experimental Program: Pull out tests – Round #1**

➢ *Test results: Summary*

Tests on 15 masonry prisms (5 types of anchors): 1) steel ribbed bars 10 mm diameter; 2) sanded glass FRP (GFRP) bars 12 mm diameter w and w/o surface treatment; 3) hollow pultruded smooth carbon FRP (CFRP) tubes (outside/inside diameter 10/8 mm) w and w/o surface treatment

Construction and Building Materials 254 (2020) 119178

Traditional and innovative systems for injected anchors in masonry elements: Experimental behavior and theoretical formulations

Francesca Ceroni^{a,*}, Marco Di Ludovico^b

^a Engineering Dept., University of Napoli 'Parthenope', Centro Direzionale, Is. C4, 80143 Napoli, Italy b Dept. of Structures for Engineering and Architecture. University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy

Marco Di Ludovico, New Orleans, USA, 03/24/2024 Constr. Build. Mat.: 2020

Surface treatment: wrapping the FRP bars with a stainless steel fabrics (SRP) embedded in a putty

➢ **Experimental Program: Pull out tests #1**

➢ *Test results: Summary*

FAILURE MODE

- a) Sliding at bar-grout (SBG) interface for the ribbed steel bars;
- b) Sliding at bar-grout (SBG) interface on GFRP bars;
- c) Sliding at bar-grout (SBG) for CFRP tubes (MC10u-2);
- d) Sliding at grout-masonry (SGM) interface for treated GFRP bars;
- e) Mixed failure $(SGM + CMD)$ for treated CFRP tubes

➢ **Experimental Program: Pull out tests #1**

➢ *Test results: Summary*

- **STEEL** GFRP untr. GFRP tr. CFRP untr. CFRP tr.
- \triangleright The tests showed that FRP systems are able to provide performance comparable or higher in comparison with the steel bars only by increasing their bond behaviour by means of a surface treatment.

➢ **Experimental Program: Pull out tests #1**

➢ *Test results: Summary*

➢ **Experimental Program: Pull out tests – Round #2**

➢ *Test results: Summary*

helicoidally ribbed basalt bar (B 8)

helicoidally wrapped glass bar (G10 and G12)

sanded glass spike (Gspike)

Steel tube

Rebar

Masonry specimen

230 읚 105

➢ **Experimental Program: Pull out tests**

➢ *Material Mechanical properties*

➢ **Experimental Program: Pull out tests – Round #2**

➢ *Test results: Summary*

G12 2: CMD+SGM+SM G12 3: SBG G12 1: SGM+CMD

helicoidally wrapped glass bar (G10 and G12)

- \triangleright In most cases mixed failure modes were observed, (two or three failure mechanisms)
- \triangleright After peak, a sinusoidal trend was observed due to the progressive slippage of the bar/grout system from the surrounding masonry and, relevant reduction of the embedded length.
- \triangleright For the glass bars, the load increase was only 16% when the diameter changed from 10 mm to 12 mm, which corresponds to an increase of 59% in terms of anchor's area.

➢ **Experimental Program: Pull out tests – Round #2**

f)

helicoidally ribbed basalt bar (B 8)

- \triangleright In most cases mixed failure modes were observed,
- The basalt bars attained the highest values of tensile stress and a very ductile post-peak behaviour characterized by residual bond strengths and large displacements

 \triangleright The lowest pull-out forces were attained by the carbon bars with diameter 10 mm (16.15 kN in average) characterized by a smooth lateral surface.

➢ **Experimental Program: Pull out tests – Round #2**

➢ *Test results: Summary*

D

sanded glass spike (Gspike)

- \triangleright The pull-out loads on glass bars diameter 10 mm, basalt bars diameter 8 mm and glass spike anchors were very similar (18.1 – 18.7 kN) and in average with the results of the other bars
- \triangleright The highest ratio $\eta = \sigma_{\text{max,av}}/f_{\text{atm}}$ was attained by the glass spike anchor, even if this system was the most sensitive to detailing, because the curing of the resin incorporating the glass fibres and the sand coating were realized in laboratory and not by the producer

➢ **Experimental Program: Pull out tests – Round #2**

*not considered in the average value

Test results: Summary $\eta = \sigma_{\text{max,av}}/f_{\text{atm}}$, average exploitation ratio

helicoidally wrapped glass bar (G10 and G12)

Sanded glass spike (GSpike) ew Orleans, USA, 03/24/2024

➢ **Experimental Program: Pull out tests – Round #2**

- ➢ *Conclusive remarks*
- \triangleright In most specimens, the slippage at the bar-grout or at the grout/masonry interface occurred
- ➢ After the maximum load is attained, the softening behaviour of the load-slip curves is characterized by a sinusoidal trend that give high ductility to this failure mode. This behaviour is due to the progressive slippage of the bar/grout system from the surrounding masonry and, consequently, to the progressive reduction of the embedded length where the interlocking is effective, until the full slippage of the bar occurs;
- ➢ The experimental program showed that the basalt bars with diameter 8 mm and the glass spike anchors resulted the most efficient systems for the following reasons:
	- 1) they both attained comparable pull-out loads, in average with the results of the other bars,
	- 2) the basalt bars attained the highest values of tensile stress and a very ductile post-peak behaviour characterized by residual bond strengths and large displacements,
	- 3) the glass spike anchors attained the maximum efficiency coefficient and, probably thanks to their rough surface, the failure never occurred at the bar/grout interface.
- ➢ Some scattering in the results, both in terms of failure loads and modes, is ascribable to the high heterogeneity of the tuff stones used in the tests since they were characterized by a diffuse presence of voids and inclusions. **Marco Di Ludovico, New Orleans, USA, 03/24/2024**

➢ **Work in progress……**

➢ *Modelling and code provisions*

Original tests + analysis of literature results on injected anchors in masonry elements + calibration of new design formulations to predict the maximum pull-out force (for predicting the pull-out strength in case of whatever failure mode)

Thank you!

Prof. MARCO DI LUDOVICO

University of Naples Federico II Associate Professor Department of Structures for Engineering and Architecture Email: diludovi@unina.it

Hew Orleans, Louisiana, USA

March 23-24, 2024

www.frprcs16.com