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Annual carbon uptake roughly 20% + 3% of national calcination emissions

from existing building stock in use + end-of-life phases, respectively
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Create clear guidelines for carbon uptake estimation

OBJECTIVE
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Create clear guidelines for carbon uptake estimation

OBJECTIVE

Evaluate potential for carbon uptake to neutralize cement emissions

(This presentation focuses on process or calcination emissions)

Inform methods for environmental product declarations and

greenhouse gas accounting

Engage stakeholders to leverage properties of cement-based products

to reach carbon neutrality targets



Massachusetts Institute of Technology 9

Methods
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Crucial to produce realistic estimate of carbon uptake—underestimateunderstates benefits of 

cement-based products, while overestimateunderstates need for emissions abatement solutions

“60%”
Cao et al. 2020

“half”
Report 2021

Process

emissions

Fuel

emissions

Cement

Emissions
“43%”
Xi et al. 2016

Further needs to be reduced 

to achieve carbon-neutral 

cement

Neutralized through carbon 

uptake
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To produce realistic estimate of carbon uptake, bottom-up approach makes use of data and modeling

to characterize archetypes and context, assess individual units, and scale up to meet scope

To produce realistic estimate of carbon uptake,
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Previous Studies—Top-Down Approach for Carbon Uptake Estimation

During use

National stock as

one large surface

During end-of-life

Finely ground,

spread out

~50% lowest compressive

strength class
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Bottom-Up Approach for Carbon Uptake Estimation

During use

National stock as

archetypical surfaces

During end-of-life

Mix of sizes,

stockpiled

~10% lowest compressive

strength class
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Bottom-Up Approach for Carbon Uptake Estimation

Carbon uptake occurs during various phases

• Cement kiln dust

Cement 
production

• Cement wastage

Concrete and 
mortar production

• Structures

• Concrete blocks, 
plaster, and 
render

Concrete and 
mortar use

• Reuse

• Recycle

• Landfill 

End-of-life

Phases with insignificant 

amount of carbon uptake
Phases with significant 

amount of carbon uptake
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Geometry 

factor

Service 

life

Rate of 

carbonation

Correction 

factor

Theoretical 

maximum

Binder 

content

Degree of 

carbonation

Volume of 

cement

𝑪𝑼𝑼𝒔𝒆 =
𝒌

𝟏𝟎𝟎𝟎
× 𝑲𝒌 × 𝑼𝒕𝒄𝒄 × 𝑪 × 𝑫𝒄 × 𝑽 ×

𝑺

𝑽
× 𝒕

EN 16757 Formula for Use-Phase Carbon Uptake
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Geometry 

factor

Service 

life

Rate of 

carbonation

Correction 

factor

Theoretical 

maximum

Binder 

content

Degree of 

carbonation

Volume of 

cement

Bottom-Up Approach for Carbon Uptake Estimation

Material Definitions,Exposure Conditions, and Geometries impact use-phase carbon uptake

Compressive 

strength

Material 

definition

Exposure 

condition

𝑪𝑼𝑼𝒔𝒆 =
𝒌

𝟏𝟎𝟎𝟎
× 𝑲𝒌 × 𝑼𝒕𝒄𝒄 × 𝑪 × 𝑫𝒄 × 𝑽 ×

𝑺

𝑽
× 𝒕
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Exposure 

condition

Geometry 

factor

Service 

life

Rate of 

carbonation

Degree of 

carbonation

Compressive 

strength

Location

Bottom-Up Approach for Carbon Uptake Estimation

LocalMarket Data informsMaterial Definitions and consumption

Material 

definition

Correction 

factor

Theoretical 

maximum

Binder 

content

Volume of 

cement

𝑪𝑼𝑼𝒔𝒆 =
𝒌

𝟏𝟎𝟎𝟎
× 𝑲𝒌 × 𝑼𝒕𝒄𝒄 × 𝑪 × 𝑫𝒄 × 𝑽 ×

𝑺

𝑽
× 𝒕
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Bottom-Up Approach for Carbon Uptake Estimation

LocalMarket Data informsMaterial Definitions and consumption

Nevada Maine

Portland cement

(kg/m3)
225 216

Fly ash

(kg/m3)
33 21

Slag

(kg/m3)
0 37

50-year uptake

(kg/m2)
13 10
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Bottom-Up Approach for Carbon Uptake Estimation

LocalClimate Data informsExposure Conditions

Nevada Maine

Portland cement

(kg/m3)
350 350

Rainy days 54 155

𝑘 4.5 3.8

𝐷𝑐 0.75 0.85

50-year uptake

(kg/m2)
20 16
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Volume of 

cement

Location

Bottom-Up Approach for Carbon Uptake Estimation

LocalHousing Data informsArchetype Definition

Archetype 

definition

Compressive 

strength

Material 
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Exposure 

condition

Rate of 

carbonation
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Bottom-Up Approach for Carbon Uptake Estimation

LocalHousing Data informsArchetype Definition

New homes Year 1

New homes Year 2

Existing

homes

N
e

w
 a

n
d

 E
x

is
ti

n
g

 H
o

m
e

s

Snapshot

• BPS (Building Permits Survey)

• SoC (Survey of Construction)

• AHS (American Housing Survey)

• MHS (Manufactured Housing Survey)

• RECS (Residential Energy Consumption Survey)

• HAZUS (Multi-Hazard Loss Estimation Model)

Other archetypes

• CBECS (Commercial Energy Consumption Survey)

• HAZUS (Multi-Hazard Loss Estimation Model)

Data sources
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Bottom-Up Approach for Carbon Uptake Estimation

LocalHousing Data informsArchetype Definition

High-rise 

residential or 

commercial

Mid-rise 

residential or 

commercial

Low-rise 

residential or 

commercial

Single-family 

dwelling

Single-story 

commercial or 

industrial

Mobile 

home
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Case Study
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Use-phase and end-of-life carbon uptake varies by application—defined by characteristics of 

archetype and its elements
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Potential for carbon uptake to neutralize ~15% of annual, nationwideprocess emissions,

similar portions of which from in-use buildings, in-use infrastructure, and end-of-life
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o
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Uptake
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Potential for carbon uptake to neutralize ~15% of annual, nationwideprocess emissions,

similar portions of which from in-use buildings, in-use infrastructure, and end-of-life
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m3 mortar/m3 concrete

Potential for carbon uptake to neutralize 5-25% of annual, statewideprocess emissions,

varying by mortar/concrete application breakdown

Sequestration

Higher potential for larger portion of

mortar applications
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Annual carbon uptake in Mexico similar magnitude to U.S., despite lower production,

since higher portion of mortar, low compressive strength, and building applications

Half of production

Similar magnitude

of carbon uptake
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Takeaways
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SIGNIFICANT

ACTIONABLE

POSSIBLE TO MODEL AT HIGH RESOLUTION

CARBON UPTAKE IS…

To accurately assess both benefits of cement-based products

and need for emissions abatement solutions

CRUCIAL

Potential to neutralize annual process emissions by ~15% nationwide

and 5-25% statewide, as shown in U.S. study

SIGNIFICANT

Variation by archetype, element, and context, thus can be increased

and not governed by consumption, as shown in Mexico study

ACTIONABLE

Bottom-up approach captures local variations in archetypes, materials,

and exposure conditions, which impact various phases

POSSIBLE TO MODEL AT HIGH RESOLUTION
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bensu@mit.edu

cshub.mit.edu | Concrete Sustainability Hub

msl.mit.edu | Materials Systems Lab

Ipek Bensu Manav
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Stock > Archetypes > Elements > Material Definitions > Exposure Conditions

Concrete carbon

uptake model
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Stock > Archetypes > Elements > Material Definitions > Exposure Conditions

CMU carbon

uptake model
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Stock > Archetypes > Elements > Material Definitions > Exposure Conditions

Exposure Conditions
k for concrete, 15-20 MPa

Indoor, 

unfinished
k = 9.9

Indoor,

finished
k = 6.9

In ground
k = 1.1

Outdoor,

sheltered from rain
k = 6.6

Outdoor,

exposed to rain
k = 2.7
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In 2-story residential building with concrete frame, masonry infill walls, and 

basement, around a fifth of process emissions neutralized through carbon uptake
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In 2-story residential building with concrete frame, masonry infill walls, and 

basement, around a fifth of process emissions neutralized through carbon uptake
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Time Series Elements

• Building element and material configuration

• Cost, emission, and absorption models

• Damage and loss functions

Building Life Cycle Assessment (LCA)
     Given a specific building, what are the costs? Emissions?
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Time Series Elements

• Building element and material configuration

• Cost, emission, and absorption models

• Damage and loss functions

Building Life Cycle Assessment (LCA)
     Given a specific building, what are the costs? Emissions?

• Building and household characteristics

• Geographic information

• Historic data and projections

Housing Stock Analysis
     What kind of buildings are there? Where?
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• Building element and material configuration

• Cost, emission, and absorption models

• Damage and loss functions

• Building and household characteristics

• Geographic information

• Historic data and projections

Do I have sufficient detail?

Do I have sufficient data?

Time Series Elements

Building Life Cycle Assessment (LCA)
     Given a specific building, what are the costs? Emissions?

Housing Stock Analysis
     What kind of buildings are there? Where?

Building archetypes
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Building Archetypes    comparative,  paired

Wood (3) 1 (3) S (3) rsgab (2) rcshg (3) walow (3)

Decision

variable

Constraints

% from Census Bureau

Constraints

% from FEMA

Other BAIA

inputs

Other HAZUS

inputs

Sample space

% based on

BAIA model

Sample space

% based on

HAZUS model

Input to both BAIA (life cycle assessment) and HAZUS (loss estimation) models
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Building Archetypes    comparative,  paired

Exterior wall 

core
Stories Living area Roof shape Roof cover

Window-to-

wall ratio

Decision

variable

Constraints

% from Census Bureau

Constraints

% from FEMA

Sample space

% based on

BAIA model

Input to both BAIA (life cycle assessment) and HAZUS (loss estimation) models

Replacement 

cost

Wind debris 

zone

Terrain &

texture

Loss 

functions

Age, quality,

& ratings

Mitigation 

measures

Wind speeds

Subassembly 

loss ratios

Unit costs &

emissions

Conductivity

Materials

Equipment

Climate zone

Occupants &

set points

Geometry &

assemblies

Fuels &

electric grid

Sample space

% based on

HAZUS model
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Time Series Elements | Building Life Cycle Assessment (LCA)

Energy usage Initial construction
Repair & 

replacement
Carbon uptake

Material 

production

Transportation &

construction

End-of-life

Material 

production

Transportation &

construction

End-of-life

Cement wastage

Use

(CBPs only)

End-of-life

(CBPs only)

Cooling

Heating

Other

Operational Embodied
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Time Series Elements | Building Life Cycle Assessment (LCA)
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Time Series Elements | Building Life Cycle Assessment (LCA)
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Time Series Elements | Building Life Cycle Assessment (LCA)
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Time Series Elements | Building Life Cycle Assessment (LCA)
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Time Series Elements | Building Life Cycle Assessment (LCA)
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Contributions
Updated life cycle assessment model 
accounting for carbon uptake on 
concrete surfaces
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Understanding carbon uptake critical to planning for carbon neutrality—

overstating extent of carbonation hinders GHG reduction efforts

Concrete Surface
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Understanding carbon uptake critical to planning for carbon neutrality—

overstating extent of carbonation hinders GHG reduction efforts

Atmospheric

𝐂𝐎𝟐

Various Hydration Products +𝐂𝐎𝟐 →
𝐂𝐚𝐂𝐎𝟑 + 𝐇𝟐𝐎 + Hydrated Alumina and Silica

𝐂𝐚𝐂𝐎𝟑

𝐂𝐚-rich products
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Understanding carbon uptake critical to planning for carbon neutrality—

overstating extent of carbonation hinders GHG reduction efforts

Atmospheric

𝐂𝐎𝟐

Various Hydration Products +𝐂𝐎𝟐 →
𝐂𝐚𝐂𝐎𝟑 + 𝐇𝟐𝐎 + Hydrated Alumina and Silica

𝐂𝐚𝐂𝐎𝟑

𝐂𝐚-rich products

Carbonated Layer
How much carbon is

sequestered?

Uncarbonated Layer
Is steel corrosion

prevented?
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C-Up Model | Building life cycle stages

Energy usage Initial construction
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C-Up Model | Building life cycle stages
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C-Up Model | Building life cycle stages
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C-Up Model | Building life cycle stages
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Contributions
Updated life cycle assessment model 
accounting for emissions caused by 
damages
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Building Life Cycle

In studies of building embodied emissions, use stage “most neglected”.

Even in studies that consider use stage, repair limited to regular wear-and-tear

Pomponi and Moncaster | 2016

Product Construction Use End of Life

Included in

90% of studies

50% 20% 30%

Review of 77 studies
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Building Life Cycle

In studies of building embodied emissions, use stage “most neglected”.

Even in studies that consider use stage, repair limited to regular wear-and-tear

Pomponi and Moncaster | 2016

Product Construction Use End of Life
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Building Life Cycle

In studies of building embodied emissions, use stage “most neglected”.

Even in studies that consider use stage, carbon uptake discarded or overestimated

Pomponi and Moncaster | 2016

Product Construction Use End of Life

B1: Operational use

B2: Maintenance

B3: Repair

B4: Refurbishment

B5: Replacement

15

9

12
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4(B1) Carbon uptake 1
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BAIA model considers use stage, ignores hazard repairs as well as carbon uptake, 

both of which my work addresses

Building Attribute-to-Impact Algorithm; Hester | 2018

Product Construction Use End of Life

B1: Operational use

B2: Maintenance

B3: Repair

B4: Refurbishment

B5: Replacement

(B3) Hazard repairs

(B1) Carbon uptake
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Case Study | Florida single-family homes
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Case Study | Miami single-family homes
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Case Study | Assessing a single year of added stock
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Case Study | Assessing a single year of added stock
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Case Study | Assessing a single year of added stock
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Case Study | Assessing a single year of added stock
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Concrete homes benefit from avoided damages, making up for initial difference—

magnitude of expected damages vary widely by location

Product &

construction
(carbon uptake removed)

Replacement

Hazard repairs

Eg tract in Miami-Dade, FL (mean of 5000 samples, 100 scenarios; median scenario)

Carbon uptake

Building Embodied Emissions
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End-of-Life

Previous studies; limited
Wood favorable

Mine; more complete
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Concrete Wood Masonry

Concrete homes benefit from avoided damages, making up for initial difference—

magnitude of expected damages vary widely by location

Product &

construction

Replacement

Hazard repairs

Carbon uptake
(removed from Product)

Building Embodied Emissions
(Mt CO2e)

End-of-Life Hadn’t been studied, 

influences outcome 

significantly

Eg tract in Miami-Dade, FL (mean of 5000 samples, 100 scenarios; median scenario)
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Concrete homes benefit from avoided damages, making up for initial difference—

magnitude of expected damages vary widely by location
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Why is Carbon Uptake important?

GHG emissions from 
concrete lifecycle

GHG reduction 
activities

GHG neutralization 
activities

Carbon Neutrality



Expensive solutions, e.g.:
• CCS,
• CCU,
• …

Why is Carbon Uptake important?

GHG emissions from 
concrete lifecycle

GHG reduction 
activities

GHG neutralization 
activities

Many solutions, e.g.:
• Optimize design,
• Increase SCMs,
• …

Carbon Neutrality



Why is Carbon Uptake important?

GHG emissions from 
concrete lifecycle

Potential for carbon 
sequestration through 
Carbon Uptake

GHG reduction 
activities

GHG neutralization 
activities

Carbon Neutrality
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Contribution of carbon uptake to the 

neutralization of cement GHG emissions 

(Uptake perc) was reported in different ways:

• IPCC example 1 (for reporting national 

inventories)

• IPCC example 2 (for global contribution)

• EPD and LCA for product-level calculation 

• Non-linear response of the uptake to the 

lifetime may result in a significant divergence 

when focusing on different accounting 

systems

Motivation and Research Gap

“In addition, documentation should be provided to 
illustrate that emission reductions from 
recarbonation are only reported in the year in which 
recarbonation occurs …”

Chapter 5, Section 5.2: “The uptake of CO2 in cement 
infrastructure (carbonation) offsets about one half of 
the carbonate emissions from current cement 
production.”

IPCC example 1 

IPCC example 2 
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