

Analysis of Concrete Deep Beams with Fiber-Reinforced Polymer (FRP) Bars by Indeterminate Strutand-Tie (IST) Method

Shuqing Liu and Maria Anna Polak

Overview

- Introduction, problem statements and background
- Specimens used for model development
- Elements of ST models
- Analysis process of the proposed Indeterminate ST method:
 - Elastic Analysis
 - Parameters to be determined
 - Failure Criteria
 - Overall Process
- Results
- Conclusions

Introduction

- FRP reinforcements:
 - light-weight, non-corrosive, linear elastic and brittle
 - Cannot yield \rightarrow Concrete crushing preferred
- Deep beams:
 - Governed by arch action
 - Analyzed with strut-tie (ST) method
- Conventional ST method:
 - Based on steel yielding

[MacGregor, J. G., & Wight, J. K. (2011). Reinforced Concrete Mechanics and Design (6th). New Jersey: Pearson Education, Inc.]

→ Especially in analysis of statically indeterminate ST models (beams with complex reinforcement designs)

Background

- Analysis of deep beams reinforced by FRP bars:
 - Modelling of concrete struts becomes important
 - Reinforcement yielding cannot be assumed
- Current research and code provisions do not provide much guidance
- According to Krall and Polak (2014), Indeterminate ST method (IST method) may be the solution:
 - Elastic analysis for indeterminate ST models
 - Capable to incorporate concrete non-linear behavior
 - Needs modifications as it was developed for steel-reinforced members

Specimens

Analyses conducted on following specimens

	Slenderness	Shear reinforcement	Loading conditions	Focus on
Krall and Polak (2014, 2019)	Deep beams $a/d = 2.5$	FRP stirrups (various ρ_v)	Three-point bending	The influence from shear reinforcement
Kim et al. (2014)	Deep beams <i>a/d</i> varies	No	Four-point bending	The influence from beam sizes, slenderness ratios, stiffness of longitudinal ties.

a/d: Shear span to depth ratio

 ρ_{v} : Shear reinforcement ratio

Specimens

• Krall and Polak (2019): Six beams used for the analyses

Specimens

• Kim et al. (2014). Six beams used for the analyses.

ST Models - Elements

ST Models – Beams without Stirrups

- The typical triangular model
- One load path; failure occurs when S2 fails

ST Models – Beams with Stirrups

- Whole section as compression fan
- Changes with number of stirrup
- Load paths depend on inclined struts inside compression fan

IST Method – Elastic Analysis

- The elastic analysis is used to compute internal forces in each member using the assembled stiffness matrix.
- Stiffnesses of elements:
 - Stiffness of members: **cross-sectional area** x **elastic modulus**

- FRP ties: constant elastic modulus, constant area
- Concrete struts:
 - -tangential elastic modulus from <u>softened</u> concrete models,
 - -cross-sectional area equal to strut width (w_s) times beam width;

Concrete Struts– Softened Concrete Model

- Softened concrete model:
 - Hognestad Parabola (Hognestad, 1951)
 - Softened according to Pang and Hsu (1995)
 - Tangential modulus as the derivatives:

Figure from Pang and Hsu (1995)

Softening Factors (ζ) – Existing Approaches

• ACI 318-19

 $-\zeta_{ACI} = 0.6375$ [with stirrups]; $\zeta_{ACI} = 0.34$ [without stirrups]

• Nehdi et al. (2008):

$$- \beta_s = 0.68 - 0.012 \left(\frac{a}{d}\right)^4 \text{ for } \left(E_f \rho_f\right)^{1/3} \le 10 \qquad k = \max\left(\frac{250+d}{550}, 1.0\right)$$

$$\beta_s = 0.75 - 0.01 \left(\frac{a}{d}\right)^4 \text{ for } \left(E_f \rho_f\right)^{1/3} > 10 \qquad \boldsymbol{\zeta}_{Nd} = 0.85k\beta_s$$

• CSA S806-12 :

$$\boldsymbol{\zeta_{CSA}} = \frac{1}{0.8 - 0.34^{\varepsilon_1}/\varepsilon_0} \le 0.85$$
$$\varepsilon_1 = \varepsilon_F + (\varepsilon_F - \varepsilon_S) \cot^2 \theta_S$$

- Risk of overestimating the strength
- Predicting incorrect failure mode
- Not reflecting strength increase with increasing shear reinforcement ratios

Proposed Softening Factor (ζ)

- Based on the modified compression field theory from Vecchio and Collins (1986)
- Uses an alternative form for the equation from Mohr's circle

$$\boldsymbol{\zeta_{new}} = \frac{1}{0.8 - 0.34 \, \varepsilon_1 / \varepsilon_0} \le 0.85 \qquad \qquad \varepsilon_1 = \max(\varepsilon_f + \varepsilon_v) - \varepsilon_s$$

- ε_1 : Principal tensile strain
- ε_f : Strain in horizontal ties
- ε_v : Strain in vertical ties
- ε_0 : Strain @ compressive strengt (-)
- ε_s : Strain in strut (-)

Proposed Softening Factor (ζ) -beams without stirrups

- Cannot calculate softening factor without knowing ε_v
- *ε_v* is strain in vertical stirrup
- Truss consisting *imaginary ties* (with stiffness close to zero) is proposed to find ε_v
 - $-P_{predict} = C_{strut@failure} \sin \theta_s$
- Analysis with 5 imaginary ties is proposed
 - conservative

Concrete Strut Widths

- Widths of the struts (*w_s*) are calculated from size of the nodes and the incline of the strut
- Problems:
 - Two nodes \rightarrow two values
 - How to compute h_C
- Solutions
 - w_s can be average or smaller value
 - Need to propose a new method to determine h_C without assuming tie yielding

Conservative

 h_T

 h_{C}

W_{sC}

Strut

Tie

 $\mathcal{Y}_{\theta_{strut}}$

W_{sT}

Width of the struts

with loading plates without loading plates

with loading plates without loading plates

PAGE 17

Determination of h_C

- Based on FEA results:
 - Strain profile is assumed to be linear in compression part only

IST Method – Failure Criteria

Tie Rupture	Node Crushing	Strut Crushing	
 Rupture strength × - Brittle 	 Limited nodal strength X - Localized 	• $E \rightarrow 0$ • Failed struts: $E = 1\% E_0$	Strut strength modelling affects strength prediction

- Statically indeterminate models:
 - Crushing of <u>enough struts</u> makes the model <u>unstable</u>
- System failure:
 - Shear Failure: Crushing of inclined struts
 - Flexural Failure: Crushing of horizontal struts
 - Combined Failure: Crushing of both types of struts
 - Both shear failure and combined failure predicts shear strength

ST models also affects the analysis

Results – Specimens with stirrups

Specimen	P_{test} (kN)	$P_{predict}(kN)$	Failure Mode	$P_{predict}/P_{test}$
BM12-220	382.4	341	Shear	0.89
BM12-150	405.2	387	Combined	0.96
BM12-s230	466.9	397 💙	Shear	0.85
BM25-220	360.1	291	Shear	0.81
BM25-150	415.8	314	Combined	0.75
BM25-s230	444	316 🗸	Shear	0.71

[1 kN = 0.2248 kip]

BM12-150 Spacing between stirrups (mm); INF: no stirrup; s230: larger stirrups @ 230mm

Longitudinal rebar diameter (mm)

Strength increase with increased shear reinforcement ratio

Lower-bound estimation

Results – Specimens without stirrups

Specimen	P_{test} (kN)	$P_{predict}(kN)$	$P_{predict}/P_{test}$
A3D9M-1.4	136.1	112	0.83
A3D9M-1.7	99.0	88	0.89
A5D9M-1.7	134.0	107	0.80
C3D9M-1.4	169.3	131	0.77
C3D9M-1.7	106.5	102	0.96
C5D9M-1.7	151.4	123	0.81
F1 1 X 0 00 40 1	• ٦		

[1 kN = 0.2248 kip]

Similar strength trends

Lower-bound estimation

Conclusions

- The proposed IST method includes the following components:
 - The softened Hognestad Parabola;
 - The proposed Softening factor formulation;
 - The proposed method to compute the compression block depth (h_c)

• The IST method can be used to design and analyze shear strengths of FRP reinforced concrete deep beams with and without stirrups with relatively accurate results with proper strength increase/decrease trends.

Recommendations

- The proposed IST method is based on a limited number of specimens with stirrups due to the lack of experimental data, thus it shall be further verified on more specimens with different designs.
- The proposed IST method should be tested on other D-regions to determine its limitations and to further develop the methodology.

THANK YOU

ADDITIONAL SLIDES

Width of the struts

with loading plates without loading plates

with loading plates without loading plates

PAGE 27

Proposed ζ - Imaginary ties and Convergence

- It is incapable of analyzing beams without knowing ε_ν:
 - The case of beams without stirrups
- Truss consisting imaginary ties (with nearly no stiffness) can be utilized to find ε_v
 - $-P_{predict} = C_{strut@failure} \sin \theta_s$
 - $-P_{predict}$ increase with more ties, but converges
- Analysis with 5 imaginary ties is proposed
 - \rightarrow 1. Conservative 2. Save time
- ε_v : Strain in vertical ties

Problems on existing ζ approaches

BM12-150 Spacing between stirrups (mm); INF: no stirrup; s230: larger stirrups @ 230mm

⇒ Longitudinal rebar diameter (mm)

⊠BM12-220 ■BM12-150 ⊠BM12-s230

	Ptest	P _{predict} (kN) with		
Specimen	(kN)	A1	A2	A3
BM12-220	382.4	419	398	210
BM12-150	405.2	419	370	291
BM12-s230	466.9	418	405	217
			Predicted Fai	lure Modes
BM12-220		Flexure	Shear	Shear
BM12-150		Flexure	Shear (C)	Shear
BM12-s230		Combine	Shear	Shear
Bold results are unconservative				

- A1 based on ACI 318-19
- A2 based on Nehdi et al. (2008)
- A3 based on CSA S806-12, and

FEA results for h_C **assumptions**

