Impact of CO₂ Uptake Rate on the Environmental **Performance of Cementitious Composites: A New Dynamic Global Warming Potential Analysis**

Mirian Velay-Lizancos, Ph.D.

Vito Francioso, Ph.D.

Lopez-Arias

ACI Spring Convention – New Orleans March 24th, 2024

College of Engineering

Carlos Moro, Ph.D.

Assistant Professor

Department of Engineering Technology

carlosmoro@txstate.edu

TEXAS ENGINEERING TECHNOLOG

Background and framework

Materials and methods used

Findings and discussion

Overview of main findings

CONCRETE

2

C. Moro, V. Francioso M. Lopez-Arias and M. Velay-Lizancos (2022). "The impact of CO₂ uptake rate on the environmental performance of cementitious composites: A new dynamic Global Warming Potential analysis". Journal of Cleaner Production, 375, 134155, <u>https://doi.org/10.1016/j.jclepro.2022.134155</u>.

WMO, 2021

Highest level in 3-5 Million years!

CONVENTION

- Climate Change
- Air Pollution
- Waste Production
- Natural Depletion

WHO, 2021

CONVENTION

- Air Pollution
- Waste Production
- Natural Depletion

The World Bank

2 billion tons of MSW per year!

CONCRETE CONVENTION

- Climate Change
- Air Pollution

- Waste Production
- Natural Depletion

- **Climate Change**
- **Air Pollution**
- **Waste Production**
- **Natural Depletion**

There will be almost no fish in 2050! CONCRETE CONVENTION

NPR, 2006

Second most used material in the world (after water) with 30 billion tons each year

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONCRETE

CONVENTION

3 Different Types of Concretes:

- Reference Concrete (100% OPC)
- Fly Ash Concrete (75% OPC + 25% FA)
- Slag Concrete (60% OPC + 40% GGBFS)

Estimation of Mix Design:

- Assumed that all types of concretes would possess the same compressive strength with the same water-to-binder ratio (w/b).
- Obtained w/b using different formulas (Abrams, ACI, Bolomey and Slater).
- 25% Paste, 35% Fine Aggregate and 40% Coarse Aggregate.
- Volume Substitution of SCM (FA and GGBFS).

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Functional Unit

1 m³ of concrete with 30-MPa compressive strength

Global Warming Potential of each concrete at year 0

Ecoinvent and Marinkovic et al. (2017)

Global Warming Potential and the transportation distance for each raw material or process.

Material or process	Global Warming Potential (kg CO ₂ eq)	Transportation distance (km)
Portland cement (kg)	0.9030	292
Fly ash (kg)	0.1500 ^a	292
GGBFS (kg)	0.3920 ^b	292
Water (kg)	0.0002	-
Fine aggregate (kg)	0.0024	122
Coarse aggregate (kg)	0.0036	122
Concrete production (m ³)	4.6554	-
Transportation (t · km)	0.1673	-

^a 12.4% of the impact of hard coal (mass allocation) (Chen et al., 2010).

^b 19.4% of the impact of pig iron (mass allocation) (Chen et al., 2010).

Steinour equation

Steinour (1959)

$$O_2(\%, \max) = 0.785 \cdot [CaO(\%) - 0.7 \cdot SO_3(\%)] + 1.091 \cdot MgO(\%) + 0.000 \cdot MgO(\%)$$

1.420 · Na₂O (%) + 0.935 · K₂O (%)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

$$CO_{2} (\%, max)$$

$$GWP_{100} - At Year 100$$

$$GWP_{100} = GWP_{0} \cdot \left[1 - \left(\frac{CO_{2} (\%, max)}{100}\right)\right]$$

acı

CONCRETE

GWP_o – At Year 0

Intermediate years

$$GWP_{i} = GWP_{0} - \left[(GWP_{0} - GWP_{100}) \cdot \sqrt{\frac{t_{i}}{t_{100}}} \right] i \in [0, 100]$$

Different CO₂ uptake rates?

- 1. Weathering carbonation or conventional.
- 2. Acceleration of CO_2 uptake due to nanomodification (83% increase in the CO_2 uptake during the first 6.8 years).
- 3. CO₂-cured mixture assuming a CO₂ uptake equal to 15% of the cement mass during CO₂ curing.

Intermediate years

$$GWP_{i} = GWP_{0} - \left[(GWP_{0} - GWP_{100}) \cdot \sqrt{\frac{t_{i} \cdot (\mathbf{1} + \mathbf{k}_{A})}{t_{100}}} \right] i \in [0, 100]$$

Accelerator factor of the CO₂ uptake rate

 $k_{A} \leftarrow Conventional and CO_{2}-cured concretes - k_{A} = 0 at years [0, 100]$ Nano-modified A concretes - k_A? (83% increase in CO₂ uptake during the first Moro et al. (2021b) 6.8 years)

Intermediate years

$$GWP_{i} = GWP_{0} - \left[(GWP_{0} - GWP_{100}) \cdot \sqrt{\frac{t_{i} \cdot (1 + k_{A})}{t_{100}}} \right] i \in [0, 100]$$

Accelerator factor of the CO₂ uptake rate

 k_A Conventional and CO_2 -cured concretes - $k_A = 0$ at years [0, 100]Nano-modified A concretes - $k_A = 0.83$ until CO_2 , max (%)Nano-modified B concretes - $k_A = 0.83$ at years [0, 6.8] and $k_A = 0$ at years [6.8, 100]

Static o Dynamic Effects?

Static GWP

Dynamic GWP

- Even though CO₂-cured concretes possessed the lowest Equiv. GWP right after their production (or year 0), nano-modified A concretes exhibited the lowest Equiv. GWP at year 100.
- Results showed that the proposed dynamic analysis (Equiv. GWP) successfully quantified the effect of CO₂ uptake rate on the GWP associated with cementitious composites.
- The dynamic method employed in this study may be applied to **other impact categories or even the holistic LCA**, leading to a **more realistic assessment** of the environmental performance of cementitious composites.

Thank you for your attention! Want to know more? Scan this code!

Carlos Moro, Ph.D. Assistant Professor Department of Engineering Technology carlosmoro@txstate.edu Journal article:

