Impact of CO² Uptake Rate on the Environmental Performance of Cementitious Composites: A New Dynamic Global Warming Potential Analysis

Mirian Velay-Lizancos, Ph.D.

Vito Francioso, Ph.D.

Lopez-Arias

Assistant Professor Department of Engineering Technology carlosmoro@txstate.edu

Carlos Moro, Ph.D.

College of Engineering

TEXAS ENGINEERING TECHNOLOGY

Background and framework

Materials and methods used Findings and discussion

Overview of main findings

CONCRETE

 \mathcal{P}

C. Moro, V. Francioso M. Lopez-Arias and M. Velay-Lizancos (2022). '"The impact of $CO₂$ uptake rate on the environmental performance of cementitious composites: A new dynamic Global Warming Potential analysis". Journal of Cleaner Production, 375, 134155, [https://doi.org/10.1016/j.jclepro.2022.134155.](https://doi.org/10.1016/j.jclepro.2022.134155)

WMO, 2021

Highest level in 3-5 Million years!

CONVENTION

-
- **Climate Change**
- **Air Pollution**
- **Waste Production** $\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$
- **Natural Depletion** \bullet

7 million premature deaths per year!

WHO, 2021

- **Air Pollution**
- **Waste Production**
- **Natural Depletion** $\begin{array}{c} \bullet \\ \bullet \end{array}$

The World Bank

2 billion tons of MSW per year!

CONVENTION

- **Climate Change**
- **Air Pollution**

- **Waste Production**
- **Natural Depletion**

- **Climate Change**
- **Air Pollution**
- **Waste Production**
- **Natural Depletion**

There will be almost no fish in 2050!
 CONVENTION

NPR, 2006

Second most used material in the world (after water) with 30 billion tons each year Monteiro et al., 2017

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

aci CONCRETE

CONVENTION

11

3 Different Types of Concretes:

- Reference Concrete (100% OPC)
- Fly Ash Concrete (75% OPC + 25% FA)
- Slag Concrete (60% OPC + 40% GGBFS)

Estimation of Mix Design:

- Assumed that all types of concretes would possess the same compressive strength with the same water-to-binder ratio (w/b).
- Obtained w/b using different formulas (Abrams, ACI, Bolomey and Slater).
- 25% Paste, 35% Fine Aggregate and 40% Coarse Aggregate.
- Volume Substitution of SCM (FA and GGBFS).

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Functional Unit

1 m³ of concrete with 30-MPa compressive strength

GWP0 – At Year 0

Global Warming Potential of each concrete at year 0

Ecoinvent and Marinkovic et al. (2017)

Global Warming Potential and the transportation distance for each raw material or process.

^a 12.4% of the impact of hard coal (mass allocation) (Chen et al., 2010).

^b 19.4% of the impact of pig iron (mass allocation) (Chen et al., 2010).

Steinour equation Steinour (1959)

$$
CO_2
$$
 (%) max = 0.785 · [CaO (%) - 0.7 · SO₃ (%) + 1.091 · MgO (%) + 1.420 N = 0.935, K = 0.935

 $1.420 \cdot Na₂O$ (%) + 0.935 \cdot K₂O (%)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

GWP₁₀₀ - At Year 100
\n
$$
GWP100 - At Year 100
$$
\n
$$
GWP100 = GWP0 \cdot \left[1 - \left(\frac{CO2 (%,max)}{100}\right)\right]
$$
\n091 · MgO (%) +

aci CONCRETE

Intermediate years

$$
\text{GWP}_{i} = \text{GWP}_{0} - \left[\left(\text{GWP}_{0} - \text{GWP}_{100}\right) \cdot \sqrt{\frac{t_{i}}{t_{100}}} \right] i \in [0,100]
$$

Different CO² uptake rates?

- Weathering carbonation or conventional.
- 2. Acceleration of $CO₂$ uptake due to nanomodification (83% increase in the $CO₂$ uptake during the first 6.8 years).
- 3. CO_2 -cured mixture assuming a CO_2 uptake equal to 15% of the cement mass during $CO₂$ curing.

Intermediate years

$$
\text{GWP}_{i} = \text{GWP}_{0} - \left[\left(\text{GWP}_{0} - \text{GWP}_{100}\right) \cdot \sqrt{\frac{t_{i} \cdot (1 + k_{A})}{t_{100}}} \right] i \in [0,100]
$$

Accelerator factor of the CO² uptake rate

 $\mathbf{k}_{\mathbf{A}}$ **Nano-modified A concretes -** k_A **?** (83% increase in CO₂ uptake during the first 6.8 years) Moro et al. (2021b) **Conventional and CO₂-cured concretes -** $k_A = 0$ **at years [0, 100]**

Intermediate years

$$
\text{GWP}_{i} = \text{GWP}_{0} - \left[\left(\text{GWP}_{0} - \text{GWP}_{100}\right) \cdot \sqrt{\frac{t_{i} \cdot (1 + k_{A})}{t_{100}}} \right] i \in [0,100]
$$

Accelerator factor of the CO² uptake rate

 k_{A} **Conventional and CO₂-cured concretes -** $k_A = 0$ **at years [0, 100] Nano-modified A concretes -** $k_A = 0.83$ **until CO₂, max (%) Nano-modified B concretes -** $k_A = 0.83$ **at years [0, 6.8] and** $k_{A} = 0$ at years [6.8, 100]

Static o Dynamic Effects?

18

20

Static GWP Dynamic GWP

- Even though **CO² -cured concretes** possessed the **lowest** Equiv. GWP right after their production (or **year 0**), **nano-modified A concretes** exhibited the **lowest** Equiv. GWP **at year 100**.
- Results showed that the proposed dynamic analysis (Equiv. GWP) **successfully quantified the effect of CO² uptake rate on the GWP** associated with cementitious composites.
- The dynamic method employed in this study may be applied to **other impact categories or even the holistic LCA**, leading to a **more realistic assessment** of the environmental performance of cementitious composites.

Thank you for your attention! Want to know more? Scan this code!

Carlos Moro, Ph.D. Assistant Professor Department of Engineering Technology carlosmoro@txstate.edu

Journal article:

