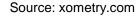
Building Beyond Limits

Making the Case for Propelling Towards 3D Printed Concrete Structural Code

Triveni Mudaliar,
Associate / Graduate Structural Engineer II
Walter P Moore and Associates, Inc.


Introduction

How is 3D printing technology used in construction?

Robotic Arm Specialized Concrete Mixture Strength Durability Workability

Gantry System

The Promise of 3D Printer in Construction

- Speed and efficiency
- Reduced wastage
- Possibility of utilizing recycled materials
- Cost savings

Design flexibility and customization

Earliest Notable Implementation of 3D Printed Structures

2013: "Villa Urbe" in Shanghai, China

2016: "Office of the Future" in Dubai

2014: "Canal House" in Amsterdam, Netherlands

2018: "3D Printed Castle" in Austin, USA

Companies/Designers that Successfully Implement 3D Printed Concrete Structures

ICON

Emergent

Printed Farms

Mighty Buildings

Larsen and Toubro, IIT Madras

University of Nantes, TICA

Apis Cor, Yves Behar

Current Limitations

- Regulatory Hurdles
- Lack of Standardization
 - o IBC 2021: Section 104.11 (alternative materials, design and methods of construction and equipment)
 - o IRC Sections R301.1.3, R104.11
 - o UFC 3-301-01 Section 1903.5
 - Acceptance Criteria (AC509) developed by ICC-ES
 - Firm patents
- Material Properties
- Quality Control

ICC-ES Evaluation Report

ESR-4623

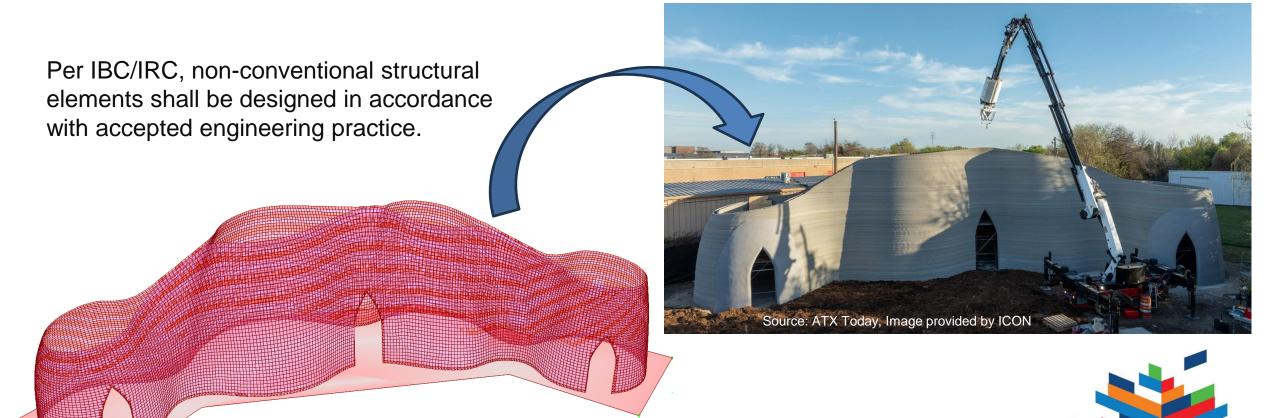
Reissued October 2023

Subject to renewal October 2024

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

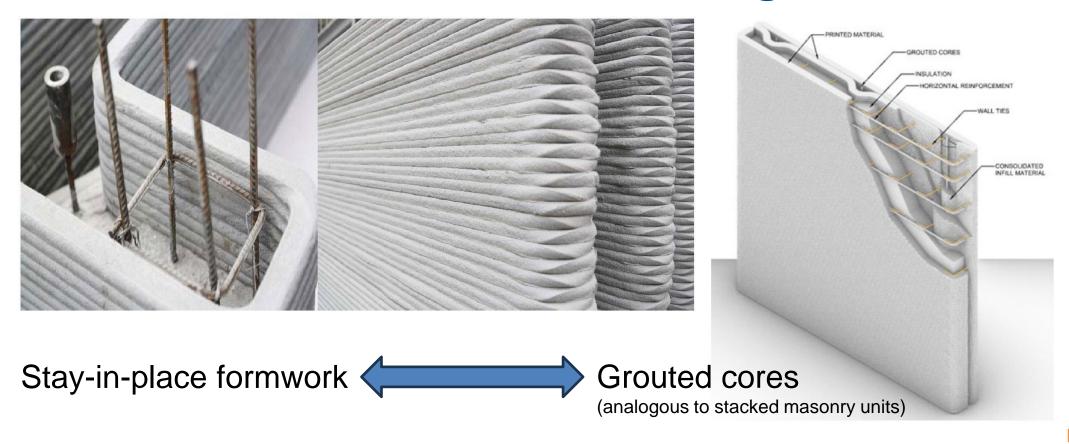
Copyright © 2023 ICC Evaluation Service, LLC, All rights reserved.

DIVISION: 03 00 00 — CONCRETE


Section: 03 37 00 — Specialty Placed Concrete REPORT HOLDER: EVA BLACK BUFFALO 3D BLA CORPORATION CON

EVALUATION SUBJECT BLACK BUFFALO 3D CONCRETE WALLS

Current Challenges



CONVENTION

Source: Walter P Moore

Current Challenges

CONVENTION

ACI 318 vs TMS402

- System proportioning Limitations
- Minimum Vertical Reinforcement
 - o For most 3D wall configurations, ACI 318 provisions are stringent
 - However, TMS 9.3.4.2.2.1 requirement could drive required reinforcing above ACI limits
- Minimum Horizontal Reinforcement
- Tie Spacing
- Cover
- Development Length
- Anchorage to foundation
 - Only ACI 318 covers shear friction model which can be limiting in case of in-plane shear capacities

Need for Structural Code

Safety Assurance

To ensure structural integrity and safety of 3D printed buildings

Industry Acceptance

o Foster confidence among architects, engineers, and investors

Innovation Catalyst

Spur further research and development

Proposed Steps Forward

- Categorize systems and identify definitions
- Possibly start with ACI 318 equations for strength calcs.

Existing Provisions

Collaboration

 Collaborate with researchers, government agencies, and industry to collect data, design method. Development of technical reports that could be incorporated in existing building codes.

> Technical Report

Continued Research & Development

 Stress importance on bridging the gap between research and industry application.

Thank You !!!

