

Fiber Alignment: The Bridge Between Efficient UHPC Design & Actual Capacity

Anthony Ragosta, P.E.

Director of Engineering & Operations ceEntek North America

Spring 2024 – New Orleans, LA

Traditional brittle behavior of concrete Personal photo of presenter

Personal photo of presenter

VS

Traditional brittle behavior of concrete

Image courtesy of FHWA

Spring 2024 – New Orleans, LA

Traditional brittle behavior of concrete

ASTM C78 Load-Deflection Curve https://theconstructor.org/structural-engg/modulus-rupture-concrete-beam/26215/

ASTM C78 Load-Deflection Curve https://theconstructor.org/structural-engg/modulusrupture-concrete-beam/26215/

VS

Deflection - δ

Traditional brittle behavior of concrete

ASTM C1609 Load-Deflection Curve

Spring 2024 – New Orleans, LA

GUIDE TO DESIGN WITH FIBER-REINFORCED CONCRETE (ACI 544.4R-18)

Fig. 4.4—Schematics of stress block for a cracked reinforced concrete flexural member without fibers: (a) reinforced concrete beam section; (b) actual distribution of normal stresses; and (c) simplified distribution of normal stresses.

Traditional Sectional Response of Reinforced Concrete

ACI 544.4R-18, Figure 4.4 Traditional Reinforced Concrete Sectional Response in Bending

Convert Behavior into Section Design Response

Source: FHWA

FHWA-HRT-23-077, Figure B.3.2-4 UHPC Sectional Response in Bending GUIDE TO DESIGN WITH FIBER-REINFORCED CONCRETE (ACI 544.4R-18)

Fig. 4.4—Schematics of stress block for a cracked reinforced concrete flexural member without fibers: (a) reinforced concrete beam section; (b) actual distribution of normal stresses; and (c) simplified distribution of normal stresses.

ACI 544.4R-18, Figure 4.4 Traditional Reinforced Concrete Sectional Response in Bending

FHWA HRT-23-077, Appendix B Rectangular Beam Example

Ŧ Ŧ	Nominal Mome
ui 567.12 No. 4 stirrups at 6 in. spacing	Flexural Control Tension from Tension from
-3 No. 11 bars	Height of Sh
	Shear Contribu
12 in.	Shear Resis
Source: FHWA.	Shear Resis

Figure B1-1. Illustration. Cross-section detail.

Tensile Property Reduction Factor, $\gamma_u = 1.00$				
Nominal Moment Capacity, $\Phi M_n = 514.4 \text{ k-ft}$				
Flexural Contribution:				
Fension from (3) #11 Bars =	280.8 kips	60.2%		
Tension from UHPC @ Localization =	185.3 kips	39.8 %		
Height of Shape in Tension (Post-Crack) =	15.44 inches	64.3%		
Shear Contribution:				
Shear Resistance from #11 Stirrups @ 6" =	114.5 kips	23.2%		
Shear Resistance from UHPC =	379.9 kips	76.8%		

Figure B1-1. Illustration. Cross-section detail.

Fibers Matter!

Tensile Property Reduction Factor, $\gamma_u = 0.85$	
Nominal Moment Capacity, $\Phi M_n = 492.7 \text{ k-ft}$	4.3% capacity]
Flexural Contribution:	
Fension from (3) #11 Bars =	No change
Tension from UHPC @ Localization =	- 13.8%
Height of Shape in Tension (Post-Crack) =	1.6% taller crack
Shear Contribution:	
Shear Resistance from #11 Stirrups @ 6" =	- 20.6%
Shear Resistance from UHPC =	- 13.6%

Fibers Matter!

FHWA HRT-23-077, Section 1.1.2 – Design Philosophy

"The <u>tensile resistance behavior</u> of UHPC <u>depends on the distribution and</u> <u>orientation of the fiber reinforcement</u> in the UHPC. These provisions rely on the <u>use of appropriate construction methods</u> to ensure that the fiber reinforcement is <u>evenly dispersed through the member and that adverse fiber orientation</u> <u>effects have been avoided</u>."

Fibers Matter! Practical Example

	Placing Method # 1	Placing Method # 2
Parallel to placement	-28%	27.4 MPa*
Perpendicular to placement	-43%	29.8 MPa

Impact is Directly & Exponentially Correlated With Height

54" UHPC Prestressed Girder Shape FHWA HRT-23-077, Appendix C

24" UHPC Rectangular Beam FHWA HRT-23-077, Appendix B

El-Helou, R., & Graybeal, B. (2023). Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams. ASCE Journal of Structural Engineering.

Prestressed Bridge Girder FHWA HRT-23-077, Appendix C Example

Figure 4 from El-Helou, R., & Graybeal, B. (2023). Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams. *ASCE Journal of Structural Engineering*.

Example: Shear Critical Section

Figure 4 from El-Helou, R., & Graybeal, B. (2023). Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams. *ASCE Journal of Structural Engineering*.

Fiber Count: 100 million

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Spring 2024 – New Orleans, LA

Example:

Preferential Alignment - Random

Figure 4 from El-Helou, R., & Graybeal, B. (2023). Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams. *ASCE Journal of Structural Engineering*.

Example:

Flexural Critical Section - Midspan

FHWA HRT-23-077, Appendix C

Example:

Preferential Alignment – Aligned

Source: FHWA.

Figure C10-2. Illustration. Mode III: UHPC crack localization.

FHWA HRT-23-077, Appendix C

- ≻151ft beam
- > 1.8 Billion Fibers
- >Poured through a 3.5" thick web
- > Encompassing > 1 mile worth of strand amongst 48 strands
- >Multiple "preferential" alignments
- > Can make up 40-80% of tension capacity

FHWA

Unique UHPC Infra LLP https://uniqueuhpcinfra.com/uhpfrc/

FHWA & Iowa DOT

Spring 2024 – New Orleans, LA

BEST PRACTICES:

LEARN!!!

&

PREPARE!!!

- Review industry precedence
- Consult material supplier(s)
 Have a backup plan
- > Perform workability tests prior > Mock-ups (French Code)

COMMUNICATE!!! &

&

What does "preferred" mean to THIS member

> What is & is not acceptable

> Two-way feedback

COLLABORATE!!!

≻Adjust as you go

> "Batch Math" – no cold joints

Fiber Alignment: The Bridge Between Efficient UHPC Design & Actual Capacity

Success is not an accident, it is designed.

Anthony Ragosta, P.E.

Director of Engineering & Operations ceEntek North America aragosta@ceEntek.com 518-428-6599

Spring 2024 – New Orleans, LA