

Fiber Alignment in UHPC Tensile Tests

Megan Voss, Kyle Riding, Raid Alrashidi, Christopher Ferraro, Trey Hamilton, Daniel Alabi, Joel Harley

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

High-strength steel fibers in UHPC give it high strength and ductility in tension

What Objectives Should I Have for Tensile Testing?

What are we trying to demonstrate?

- Ideal QC test would:
 - Accurately characterize tensile strength
 - Provide a measure of ductility or toughness
 - Can be performed with equipment commonly available
 - Simple to perform, easy for technicians to learn
 - Repeatable

1: Direct Tension

UF

4

- Produces excellent stress vs. strain results
- Does not require inverse analysis
- Very specialized equipment
- High proportion of failed tests
- Preferentially-oriented fibers

2. Flexure Test

- Gives post-cracking data
- More widely-accessible equipment
- Multiple ASTMs for flexure (ASTM C1609 is recommended for UHPC)
- inverse analysis needed
 - Inverse analysis involves assumptions
 - No standard inverse analysis

6

3. Simplified Double-PunchDoes not require expensive equipment

- Gives post-cracking data
- Does not give strain data
- Not widely standardized in U.S.

Herbert Wertheim College of Engineering

ENGINEERING SCHOOL OF SUSTAINABLE INFRASTRUCTURE & ENVIRONMENT

UF

7

Placement Effects

- A funnel was used to place the concrete in the tensile molds.
- Tensile specimens were created with UHPC placed at the center or at the edge of the specimens.
- No significant strength difference was observed when comparing edge vs. center funnel placement.

Broken samples that were filled from the edge

ENGINEERING SCHOOL OF SUSTAINABLE INFRASTRUCTURE & ENVIRONMENT

What Can Happen During Placement?

UF

9

ENGINEERING SCHOOL OF SUSTAINABLE INFRASTRUCTURE & ENVIRONMENT

¹⁰ What Can Happen During Placement?

¹¹ What Can Happen During Placement?

Herbert Wertheim College of Engineering

ENGINEERING SCHOOL OF SUSTAINABLE INFRASTRUCTURE & ENVIRONMENT

Accounting for fiber edge effects

- CT scanning was performed on tensile specimens to see how orientation differs at sample edges
- Fibers are shown in red
- Scan at center of beam (left) shows more perpendicular fibers (dots), and scan at edge of beam (right) shows more parallel fibers (lines)

¹³ Accounting for Fiber Edge Effects

- Method to account for edge effects on fiber orientation taken from French method for accounting for edge effects in flexural tests
- This method uses a correction factor to adjust the effective area of sections that are half of the fiber distance from the edge.

Location	Correction Factor, Cf
Formed edges	1.2
Sawn edges	0.5
Edges not formed or sawn, and any portion of the cross-section	1
farther than <i>lf</i> from the edge	

14

FM 5-626: Modified double-punch test

- Based off Spanish test UNE 83515-2010
- Open loop displacement control
- Displacement-load pairs recorded manually

Simplifications to Double-Punch Test

Displacement measured as vertical displacement instead of circumferential expansion

Choumanidis, D., E. Badogiannis, P. Nomikos, and A. Sofianos. (2017). Barcelona test for the evaluation of the mechanical properties of single sand hybrid FRC, exposed to elevated temperature. *Construction and Building Materials*, *138*. 296-305.

Results - Simplifying for Dial Gauge

- Continuous axial displacement data was taken with string potentiometers
- Discrete data points at different displacement intervals were selected from continuous measurements to simulated manual recording of strength at these displacement values

17

Ruggedness Study & Machine Comparison

Ruggedness study found that grinding samples, 5mm punch offset, and loading rate were not significant, but filling samples by scoop or in one placement with a bucket were statistically significant

Tested 18 samples, 6 in 3 different testing machines

Peak Strength	rength Toughness		
Average	1143 psi	Average	161.8 psi-in.
Standard Deviation	94 psi	Standard Deviation	91 ngi_in
Coefficient of Variation	8.2%	Dialitata Deviation	04 psi-iii.
		Coefficient of Variation	n 15.8%

Machine used was not found to be statistically significant using student T-test

Specimen Fabrication Method

Scoop-Filled Specimen

Bucket-Filled Specimen

²⁰ Modified Double Punch Round Robin Study

3 Different UHPC mixtures used

Mix	Concrete Mix	Fiber Content	Batch Size	56-day Compressive
	(w/cm)	(% volume)	(ft^3)	Strength (psi)
Practice Samples	0.1625	1.5	3.5	-
Material A	0.1625	1.5	3.5	19,600
Material B	0.1625	2.5	3.5	18,300
Material C	0.20	3.0	4.0	18,400

²¹ Material A & Material B

1.50% Fiber	All tests		Lab averages	
	Peak Stress (30)	Toughness (29)	Peak Stress (10)	Toughness (9)
	psi	psi*in	psi	psi*in
average	1196.9	152.9	1196.9	151.9
st.dev	133.6	27.4	73.7	16.3
CV (%)	11.2	17.9	6.2	10.7
variance	17,848	750	5425	265
	All tests		Lab averages	
2.50%	All to	ests	Lab ave	erages
2.50% Fiber	All to Peak Stress (30)	ests Toughness (26)	Lab ave Peak Stress (10)	Toughness (8)
2.50% Fiber	All to Peak Stress (30) psi	ests Toughness (26) psi*in	Lab ave Peak Stress (10) psi	erages Toughness (8) psi*in
2.50% Fiber average	All to Peak Stress (30) psi 1416.7	ests Toughness (26) psi*in 186.8	Lab ave Peak Stress (10) psi 1416.7	erages Toughness (8) psi*in 187.5
2.50% Fiber average st.dev	All te Peak Stress (30) psi 1416.7 141.9	ests Toughness (26) psi*in 186.8 31.3	Lab ave Peak Stress (10) psi 1416.7 66.1	Toughness (8) psi*in 187.5 16.6
2.50% Fiber average st.dev CV (%)	All to Peak Stress (30) psi 1416.7 141.9 10.0	ests Toughness (26) psi*in 186.8 31.3 16.8	Lab ave Peak Stress (10) psi 1416.7 66.1 4.7	Toughness (8) psi*in 187.5 16.6 8.9

Material A

Material **B**

10

Results from both simplified test methods correlate to direct tension test results

A) Flexure test:

Results from both simplified test methods correlate to direct tension test results

B) Double-Punch test:

UF

26

Results from both simplified test methods correlate to direct tension test results

B) Double-Punch test:

Conclusions

Get preferential orientation at edges of direct tension samples

Double punch test has acceptable repeatability, potential for QC testing

Correlation testing done during qualification testing could provide path for using simpler tests for QC

³⁰ Acknowledgements

- **FDOT** for funding this research
- The advice of Steve Nolan and Dale DeFord from FDOT are acknowledged

Herbert Wertheim College of Engineering

³¹ Instability in Open Loop System

Luana de Carvalho Ribeiro Simão, André Baltazar Nogueira, Renata Monte, Renan P. Salvador, Antônio Domingues de Figueiredo, "Influence of the instability of the double punch test on the post-crack response of fiber-reinforced concrete," Construction and Building Materials, Volume 217, 2019, Pages 185-192, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.05.062.