

Bond Behavior of Epoxy-Coated Reinforcing Bars in Non-Proprietary Ultra-High Performance Concrete

Sanjeeb Thapa Dr. David Darwin Dr. Matthew O'Reilly Dr. Rémy D. Lequesne

KUM

March 26, 2024

Outline

- •What is Ultra-High Performance Concrete (UHPC)?
- Objectives and Scope
- Research
- Findings

UHPC

- Advanced construction material
- Very high early compressive strength (often > 20 ksi)
- High tensile strength (> 1 ksi)
- 1-3% by volume of steel fibers (most often 2%)
- Contains no coarse aggregate
- Low water-to-cementitious material ratio (w/cm < 0.22)</p>
- Very workable Spread = 8-10 in.

Spread Test

Advantages of UHPC

 High compressive strength and fiber performance allow for the development of reinforcing steel with very short embedment lengths

Viable option for use in bridge-deck closure strips

Bridge-Deck closure strips (Source: Castine, 2017; New York State DOT)

Existing knowledge

Most UHPC mixtures are proprietary = \$\$

 Existing design approaches for bond strength in UHPC based on pullout tests – this test method is not recommended for determining bond strength

Objectives

- Develop non-proprietary UHPC
- Perform realistic bond tests for use in design to determine effect of bar size, cover, splice length, spacing, and surface properties of reinforcing steel
- Develop design recommendations for splice length in non-proprietary UHPC

Scope

- 144 UHPC batches
- 92 modified pullout tests
- •24 modified beam-end specimens
- 28 beam-splice specimens
- No. 4, No. 5, No. 8 bars

•Uncoated, Epoxy-coated and Textured epoxy-coated bars

Research

THE UNIVERSITY OF KANSAS

Uncoated bars

Epoxy-coated bars

Textured epoxy-coated bars

Non-proprietary UHPC

Material/Properties	Mix A	Mix B
<i>w/cm</i> ratio	0.183	0.183
Spread (in.)	10.13	9.75
Fiber Distribution	Not well- distributed	Well-distributed

w/cm ratio: water to cementitious materials ratio

- Each mix had two superplasticizers from the same company
- Mix B had a set accelerator

Strength

Compressive

Age (days)	Strength (ksi)		
	Mix A	Mix B	
1	9.56	8.57	
3	12.13	11.89	
7	14.95	14.40	
	Peak Strength (ksi)		
Age (days)	Mix A	Mix B	
3	1.90	2.89	
7	2.78	3.60	

Bond tests

THE UNIVERSITY OF KANSAS

Non-contact splices

Bars spliced by noncontact lap splices

Space $\leq \ell_s/5$ Space ≤ 6.0 in.

Splice tests

Beam-splice specimen with UHPC closure strip

Splice tests – Key Variables

Parameters	Range	
Bar Size	No. 4, 5, 8	
Bar Type	U, E, T	
Splice length, ℓ _s (in.)	$6d_b$ to $10d_b$	
Bar spacing (in.)	1.5 to 3	
Concrete cover (in.)	1, 2.5	

U = Uncoated, E = Epoxy-coated, T = Textured epoxy-coated

Splice tests – No. 4, No. 5, and No. 8 bars

Splice test results - Uncoated bars

 c_{b} = cover to center of bar being developed to nearest concrete surface

Splice test results - Epoxy-coated bars

 $c_b' = \text{cover to center of bar being developed to nearest concrete surface}$

Comparisons to spliced bars in conventional concrete – Use ACI Committee 408 database

•Uncoated:
$$f_{s \text{ test}}/f_{s \text{ ACI 408}} = 2.23$$

Epoxy-coated:
$$f_{s \text{ test}}/f_{s \text{ ACI } 408} = 1.94$$

•Textured epoxy-coated: $f_{s \text{ test}}/f_{s \text{ ACI 408}} = 2.37$

 $f_{s \text{ Epoxy-coated}}/f_{s \text{ Uncoated}} = 0.87 \text{ vs.} < 0.7 \text{ in conventional concrete}$

Proposed Design Equation: ℓ_s

Design equation:
$$\ell_s = \frac{A_b f_y - 24\lambda_{cfu} d_b}{1.1c'_b} \ge 6d_b$$

 λ_{cfu} = coated bar factor for spliced bars in UHPC

= 1.0 for uncoated and textured-epoxy-coated bars

= 0.7 for epoxy-coated bars

 c'_b = cover to center of bar being developed to nearest concrete surface

Evaluating proposed design provisions: ℓ_s

	f _{s test} / f _{s design}			
	U	ш	Т	
MAX	1.60	1.71	1.62	
MIN	1.03	1.00	0.96	
MEAN	1.26	1.32	1.32	
STDEV	0.172	0.193	0.289	
COV	0.136	0.146	0.218	

Summary of findings

- UHPC can be made from local materials
- Admixtures play a big role in UHPC
- Bond strength in UHPC is two times that of conventional concrete without confining reinforcement at same compressive strength

Summary of findings

- Negative effects of epoxy coating are less in UHPC than in conventional concrete
- Textured epoxy-coated bars have the same bond strength as uncoated bars

Questions?

