Experimental Investigation of Fracture Toughness in CoalCombustion Ash Concrete Using 4D X-ray CT

Student: Soniya Tiwari

Advisor: Laura E. Dalton

Department of Civil and Environmental Engineering, Duke University, Durham, NC

Outline

- Background
- Research Motivation
- Methods
- Ongoing Results
- Next Steps

Background

 Portland cement contributes 8-10 % global CO₂ emissions

 Common solution - Supplementary Cementitious Materials (SCM)

ASTM C618 - Class C and Class F fly ash

Reduce the clinker factor

Supplementary Cementitious Materials (SCMs)

Fly ash

y Matural poz

Often by-products or waste from other industries

Research Motivation

 Dwindling supply of coal combustion ash and environmental exposure from past disposal

• ASTM C618-23

 Research Goal: Can we link the CCA oxide composition to mechanical properties to guide performance-based construction?

Coal Combustion Products: Production and Use

American Coal Ash Association

Methods: Chemical Composition

- CCA accumulated for decades
- Carbon Ore Resources Database (CORD)
 - > Working collection of 399 data files
 - > CCA batches from different US plants
 - > Percentage composition of various oxides

Methods: Fly Ash Performance Calculator

- Prediction of fly ash substituted concrete performance
- Depends on chemical composition
- Limitation: specified range for data

Methods: Compressive Strength Tests

- Started with fly ash available in comparatively more amount
- Concrete with 0 40% fly ash substitution
- 2 x 2 inch cube and 2 x 4 inch cylinder specimens
- Material Testing System (MTS) for 1, 3, 7 and 28 days
- X-ray computed tomography (CT) mechanical testing

Specimen setup in MTS

Method: X-ray Computed Tomography

Methods: Three-Point Bending Test

- Flexural strength test
- **DEBEN** in-situ loadcell
- **Small specimens**
- 4D X-ray CT scan of crack propagation

Methods: Foam Index Test

- Volume of air entraining admixture as per CCA substituted
- ASTM C1827
- Overcome reduction in air content due to fly ash substitution
- Ensure workability and durability
- Comparison of results in hardened concrete

Unstable foam

Stable foam

Summary of Methods

Results: Chemical Composition

- Oxide composition
- Relate performance of hardened concrete to oxide components

Results: Fly Ash Performance Calculator

Prediction of compressive strength and diffusion coefficients of fly ash substituted concrete compared to Portland cement concrete

Results: Foam Index Test (4D X-ray CT)

Unstable foam

Stable foam

Results: Compressive Strength Test

Compressive strength graph for cube

Compressive strength graph for cylinder

Ongoing and Next Steps

 Three-point bending test for flexural strength

Four-point bending test for modulus of rupture

Initial Loading

Initial crack development

Crack propagation

Setup for three-point bending

• **ASTM C78**

Acknowledgments

Thank you for your attention!

Questions?

Email: <u>soniya.tiwari@duke.edu</u>

Advisor Email: <u>laura.dalton@duke.edu</u>