

Thermal and Structural Performance of 3D Printed Wall Section as a Function of Infill Pattern

Avinaya Tripathi

Graduate Student, School of Sustainable Engineering and the Built Environment Arizona State University

Barzin Mobasher, Narayanan Neithalath

Professor, School of Sustainable Engineering and the Built Environment Arizona State University <u>Narayanan.Neithalath@asu.edu</u> <u>http://neithalath.engineering.asu.edu</u>; <u>http://3dconcrete.asu.edu</u>

Concrete 3D Printing

Concrete 3D Printing

Concrete printer

Buildability of Mortars

- Analytical Model developed at ASU used to characterize the buildability.
- Mortar with high buildability required to print larger height sections.
- A normal strength mortar (75 MPa 28-day strength for casted cubes) with buildability of near 40 cm (wall of 25 mm thickness) after 30 minutes from mixing.
- A HPC mixture (110 MPa 28-day strength for casted cubes) with a buildability of near 32 cm (wall of 25 mm thickness) after 15 minutes from mixing.

Infill Patterns

Single Layer

Complete Infill (Solid)

Triangular Truss

And few more...

Thermal Conductivity

ac

NCRFTF

- Conductivity in the lower spectra for general mortar (typically reported to be in the range of 0.5 to 2.5 W/mK).
- 25% decrease in conductivity (or simply 25% more resistant to transfer of heat through the thickness) with a Triangular Truss infill compared to solid infill.

Effect of Inclusion of PCM in the mixture

- 5% PCM (Phase change temperature 25°C) by volume of the mix added to the normal strength mixture and printed (Solid infill).
- At 7.5°C, near 25% decrease in conductivity; 22% decrease at 10°C.
- Conductivity expected to increase more rapidly at higher temperature.

NCRFTF

Anisotropic Effect of 3D printing

• Previous work shows weakest when tested in compression in the vertical direction (i.e. compression along the built-up direction).

aci

NCRETE

Anisotropic Effect of 3D printing

• For low water cement ratio mortars; Direction-2 didn't have deterioration of strength.

Flexural Strengths (print direction along span of the beam)

Anisotropic Effect of 3D printing

- Normal strength mortar shows similar effect.
- Higher Strength mortar didn't show significant anisotropy.

Smaller Scale Testing

For Normal Strength Mortar; Solid Infill cuboid from which cylinders cored out.

Smaller Scale Testing

- Crack initiation from filament joints, while section still able to take incremental load.
- Cracking in the perpendicular direction followed quickly.

Smaller Scale Testing

CONVENTION

Strain along direction-3 from DIC analysis (near 50% loading of crack initiation load).

Large Scale Compression Testing

D. Patel et. al. (2023)

CONVENTION

400 kips capacity compression testing machine.

Narayanan.Neithalath@asu.edu

3 D

CONCRETE

An NSF AccelNet Collaborative Effort

U.S. DEPARTMENT OF ENERGY

QUESTIONS?

