Impact of CO₂ Sequestration on the Embodied Impact of Concrete Masonry Products

Craig Walloch

Director of Materials Science

Concrete Masonry and Hardscapes Association (CMHA)

Carbon Sequestration – Measuring the Rate of Carbonation of CMU

- The Rate of Carbonation of 'regular' wet-cast concrete has been widely studied and modeled.
- The rate is generally fairly slow (1 to 5 mm/year) depending on a number of factors including composition, curing, and permeability of the concrete.
- The Rate of Carbonation of dry-cast concrete has not been widely studied
- CMHA (NCMA) undertook research starting in 2020 and presented the results at as 2022 ASTM Masonry Symposium

Dry-Cast Concrete Masonry Units (CMU)

- Dry-cast concrete masonry units (CMU) are manufactured using vibration to consolidate concrete of stiff (zero-slump) consistency in a mold or form
- CMU are commonly called Concrete or Cinder Block
- The most common shape has nominal dimensions of 8 x 8 x 16 in. (20 x 20 x 40 cm) and are approximately 50% solid with webs and face shells that are typically 1 1.5 in. (25 40 mm) in thickness.
- These thin elements as well as the more porous structure of the concrete differentiate it from wet-cast concrete and result in significantly higher natural carbonation rates

CONCRETE STRUCTURE

Wet-Cast Structure

Air-entrained bubbles but no interconnected voids

Dry-Cast Structure Abundant interconnected voids

CMU Raw Materials

Cementitious Materials (8 -15%)

Aggregates (75 - 85%)

Water (5 - 8%)

 Admixtures/Pigments (less than 1%)

CO₂ EMISSIONS OF CMU PRODUCTION

Rough Estimation

 $\approx 82\%$ due to cement

- ≈ 5% due to other CMU raw materials
- ≈ 13% due CMU plant operations

CO₂ EMISSIONS OF CEMENT PRODUCTION

Rough Estimation

- ≈ 50% due to chemical reaction
- ≈ 40% due to energy required
- ≈ 10% other cement plant processes

CEMENT PRODUCTION

CEMENT PRODUCTION RELEASES CO₂

Carbon Sequestration Cycle

- Yes, CO₂ is released during cement production...but some of that CO₂ is reabsorbed by the concrete once placed in service
- This reabsorption of CO₂ is called *Carbon Sequestration* or *Carbon Uptake*
- Calcium Hydroxide [Ca(OH)₂] from the cement hydration process carbonates first
- Cement (CSH) Gel also carbonates later

CONCRETE HYDRATION ABSORBS CO₂

CONCRETE HYDRATION ABSORBS CO₂

WET-CAST CONCRETE SEQUESTATION

Wet-Cast

White surface is carbonated

- CO2 penetrates and sequesters slowly at the outer few mm
- Due to the *lower permeability* is no and lack of interconnected voids

Pink interior is not carbonated

DRY-CAST CONCRETE SEQUESTRATION RESEARCH UNDERWAY

Dry-Cast

- CO₂ *penetrates* much *quicker* and *deeper*
- Due to the higher permeability and abundance of *interconnected voids*

Set 6

13 Week

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Set 6 4 Week

Set 6 26 Week

Carbon Sequestration – Determining the natural carbonation rate of CMU

- There are numerous carbon capture, accelerated carbonation, and related technologies in use and in development today that permanently sequester CO₂
- While it was well known that concrete carbonates, we didn't have a good baseline for *natural* dry-cast concrete carbonation
- To generate the baseline, we needed to determine the Carbonation *Potential* of the cement and measure the *Rate of Carbonation* of CMU over time

- The Carbonation Potential is the total amount of CO₂ that the cement could reabsorb if all of the calcium hydroxide and cement (CSH) gel fully reacted with the CO₂
- This potential will depend on the particular chemistry of the cement but can be theoretically *calculated for any cement*

PORTLAND CEMENT HYDRATION REACTIONS

ORLD'S GATHERING PLACE FOR ADVANCING CONCRETE	CONCRETE CONVENTION	
$3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 3\text{CaSO}_4 2\text{H}_2\text{O} + 26 \text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O}$ $C_3\text{A} + 3(\overline{\text{CSH}}_2) + 26\text{H} \rightarrow C_6\overline{\text{AS}}_3\text{H}_{32} \text{ (ettringite)}$	Eq. 3	
$2(2CaO \cdot SiO_2) + 4H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 3H_2O + Ca(OH)_2$ $2(C_2S) + 4H \rightarrow 3C_3S_2H_3 + CH$	Eq. 2	
$2(3CaO \cdot SiO_2) + 6H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 3H_2O + 3Ca(OH)_2$ $2(C_3S) + 6H \rightarrow 3C_3S_2H_3 + 3CH$	Eq. 1	

CARBONATION REACTIONS

$\begin{array}{rcl} Ca(OH)_2(aq) + CO_2(aq) & \longrightarrow & CaCO_3 + H_2O \\ CH & + & \overline{C} & \longrightarrow & C\overline{C} & + & H \end{array}$	Eq. 4	
$3\text{CaO} \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O}(s) + 3\text{CO}_2(\text{aq}) \rightarrow 3\text{CaCO}_3 \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O}$ $3\text{C}_3\text{S}_2\text{H}_3 + 3\overline{\text{C}} \rightarrow (\overline{\text{CC}})_3\text{S}_2\text{H}_3$	Eq. 5	
$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O}(s) + 3\text{CO}_2(aq) \rightarrow 3\text{CaCO}_3 + 3\text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 2\text{Al}(\text{OH})_3(s) + 9\text{H}_2\text{O}$ $C_6\text{A}\overline{S}_3\text{H}_{32} (\text{ettringite}) + 3\overline{C} \rightarrow 3(C\overline{C}) + 3(C\overline{S}\text{H}_2) + 2\text{AH} + 9\text{H}$	Eq. 6	

ac

NCRETE

Cement Compositon with Molecular Weight Values

<u>CCN</u>	<u>Oxide</u>	<u>MW</u>
С	CaO	56
S	SiO ₂	64
Н	H_2O	18
А	Al_2O_3	102

<u>Carbo</u>	on Se	questra	tion	Reaction	<u>ns with</u>	Molecular	Weight	Values	<u>.</u>
$2C_3S$	+	<u>6H</u>	=	<u>Total</u>	=>	$\underline{C_3S_2H_3} +$	<u>3CH</u>	=	<u>Total</u>
464		108		572		350	222		572
		% of (Origi	nal C ₃ S W	Veight	75.4%	47.8%		123.3%
	%	6 of Tota	l Rea	action Pro	oducts	61.2%	38.8%		100.0%

% of Phase		Ca(C	CO2		
in Cement	f	rom Phas	e	in Cement	<u>Uptake</u>
49.2%	X	47.8%	=	23.5%	14.0%

								% of Phase		Ca(C	CO2				
<u>Carbo</u>	n Se	equestra	ation	Reaction	ns wit	h Molecular	Weight	Valı	ies	in Cement		from Phase	<u>e</u>	in Cement	<u>Uptake</u>
<u>2C₃S</u>	+	<u>6H</u>	=	<u>Total</u>	=>	$\underline{C_3S_2H_3} + \\$	<u>3CH</u>	=	<u>Total</u>						
464		108		572	-	350	222		572				_		\frown
		% of	Origin	nal C ₃ S W	eight	75.4%	47.8%		123.3%	49.2%	X	47.8%	=	23.5%	14.0%
	(% of Tot	al Rea	action Pro	ducts	61.2%	38.8%		100.0%				_		
$2C_2S$	+	<u>4H</u>	=	<u>Total</u>	=>	$\underline{C_3S_2H_3} + \\$	<u>CH</u>	=	<u>Total</u>						
352		72		424		350	74		424						
		% of	Origin	nal C ₂ S W	ei sht	99.4%	21.0%		120.5%	20.2%	X	21.0%	=	<u>4.3%</u>	<u>2.5%</u>
	C	% of Tot	al Rea	action Pro	ducts	82.5%	17.5%		100.0%						
										Stotal				27.8%	16.5%
]	Reaction	/	% of									
				Product		C_3S or C_2S			% of Cem						
$\underline{C_3S_2H_3}$	Con	<u>itent</u>		$\underline{C_3S_2H_3}$		in Cement			$C_3S_2H_3$				Fre	$m C_3 S_2 H_3$	<u>21.6%</u>
C ₃ S		=		75.4%	X	49%		=	37.1%						

Carbon Sequestration Research Measuring the Rate of Carbonation of CMU

- NCMA (CMHA) undertook research starting in 2020 and presented the results at as 2022 ASTM Masonry Symposium
- CMU were collected from producers across North America along with the raw materials (cement and aggregate) and the mix designs used in the CMU
- An analytical method call *Thermogravimetric Analysis (TGA)* was used to determine the amount of *CO*₂ that was *bound in the concrete*
- After correcting for the CO₂ that was initially bound in the raw materials this yielded that amount of CO₂ that was reabsorbed by the cement hydration products due to carbon sequestration

Carbon Sequestration Research CMU Sample Preparation

- *CMU* stored in the exterior yard at *NCMA lab*
- *Nine sets* were included in the study
- Face Shell Coupons were harvested at various ages (4, 13, 26 weeks plus 1 & 2 years [after paper was written])
- Coupons were vacuum-sealed to stop further carbonation

CONVENT

Carbon Sequestration Research CMU Sample Preparation

 A 3 to 6-mm slice was cut from the center of each coupon, dried, ground and analyzed by TGA

Preliminary Summary of Test Results (% of potential sequestration)

- 28 days
- 6 mo.
- 1 year
- 2 years
- ~ 23% of potential
 ~ 41% of potential
 ~ 47% of potential
 ~ 43% of potential

Projected results

- 5 years
- ~ 60% of potential
- 20-25 years ~ 75% of potential

CO₂ EMISSIONS OF CMU PRODUCTION

Rough Estimation

 $\approx 82\%$ due to cement

- ≈ 5% due to other CMU raw materials
- ≈ 13% due CMU plant operations

CO₂ EMISSIONS OF CMU PRODUCTION (PER M³)

In this scenario, 1 m³ of CMU (\approx 140 8x8x16) emits 210 kg CO₂e

\approx 86 kg CO₂ due to chemical reaction

- \approx 17 kg CO₂ due cement plant operations
- ≈ 69 kg CO_2 due to energy use
- \approx 11 kg CO₂ due to other CMU raw materials

CONCRETE

≈ 27 kg CO₂ due CMU plant operations

28 days

23% of potential

- emissions associated with chemical reaction only

10% of total associated emissions

emissions associated with the whole process of CMU manufacturing

CONCRETE

Total sequestration ≈ 20 kg CO₂

6 months

41% of potential

- emissions associated with chemical reaction only

17% of total associated emissions

emissions associated with the whole process of CMU manufacturing

CONCRETE

Total sequestration ≈ 35 kg CO₂

1 year

47% of potential

- emissions associated with chemical reaction only

19% of total associated emissions

emissions associated with the whole process of CMU manufacturing

CONCRETE

Total sequestration ≈ 40 kg CO₂

2 years

54% of potential

- emissions associated with chemical reaction only

22% of total associated emissions

emissions associated with the whole process of CMU manufacturing

CONCRETE

Total sequestration ≈ 46 kg CO₂

Wet-Cast CO₂ Sequestration of 10" Thick Wall (PER M³)

Relative Comparison - Total Embodied Carbon per m³

- CMHA is partnering with the *MIT Concrete Sustainability Hub (CSHub)* to model the *natural carbon uptake of CMU* and masonry systems
- Modeling will build off of the EN16757 model of wet-cast concrete

- While the modeling will build off of the classic wet-cast model there are some unique issues that may need to be addressed
- First the classic model addresses carbonation only during the Use Stage (B1–B7)
 - CMU also have significant carbon uptake in the *Cradle-to-Gate Stage (A1-A3)* due to the combination of (a) *high porosity* (interconnected voids), (b) *thin elements* and (c) *hollow structure* which causes a 'chimney effect' when they are stored in the yard.
 - During this early-age carbonation the cement is in a very active hydration state and is continuously *producing more calcium hydroxide* as the C3S phase hydrates so it is *not in a steady-state* that the classic model is built on

- Other issues to ponder:
- Wet-cast concrete has a fairly homogenous micro-pore structure of the cement paste/mortar (except possibly for the finished surface) while *CMU has another level of porosity* – the '*macro' interconnected voids*. How might this affect the K values?
- Because dry-cast concrete is lacking water, it is harder to disperse all of the cement during mixing. CMU are typically estimated to have 20 – 30% of the cement that is agglomerated and 'not hydratable'. How does this impact DOC values?

- To help address these issues additional testing is in progress
 - Early age tests (1 to 28-day)
 - Profile testing of face shells (a) Outer crust (0-6 mm), (b) intermediate layer (6-12 mm), and (c) center core (12-18 mm)
- Concrete pavers will also be studied using profile testing
- Once fundamental baseline modeling is completed further work will look at:
 - *Effect of exposure conditions* (e.g. painted, stucco or render, etc.) on the DOC values of masonry systems
- Working towards building reliable models for masonry and other dry-cast manufactured concrete products

Impact of CO₂ Sequestration on the Embodied Impact of Concrete Masonry Products

Thank you!

