Department of Civil and Environmental Engineering

Structural Engineering and Materials

Development of Design Recommendations for Hooked Bar Lap Splices

By: Zachary W. Coleman, E.I.T., M.S.

Graduate Research Assistant

Eric Jacques, P.Eng., Ph.D.

Assistant Professor

VIRGINIA TECH

Carin L. Roberts-Wollmann, P.E., Ph.D.

Professor and Associate Department Head

Background

Hooked Bar Lap Splices

- Used to reduce required splice lengths in precast concrete construction
- Presently no code guidance;
 design of splices is speculative
- Research aims to develop design recommendations for hooked splices

Applications of Hooked Bar Lap Splices

Beam-to-Beam

Precast Moment Frame (Parastesh et al. 2014)

(a) Beam-to-beam connection

Deck-to-Deck

Precast Moment Frame (ACI 318 2019)

Experimental Tests form Basis for Design Recommendations

Review of Testing Program

64 specimens in test matrix examining the influence of: splice length, concrete strength, bar size, splice spacing, cover, hook shape, number of layers of hooks, beam depth, casting position, transverse reinforcement, bar bundles, and steel fibers

Resistance Mechanism of Hooked Bar Lap Splices

Simplified Resistance Mechanism of Noncontact Hooked Bar Lap Splices 5

Database for Developing Design Equation for Hooked Bar Lap Splices

Question: Can existing

hooked bar development

length equations be used

to design hooked bar lap splices?

- Consider 54 of 64 test specimens
- Exclude atypical configurations (e.g., fiberreinforced concrete)

Summary of Parameters in Hooked Bar Lap Splice Database

Parameter	Range	
Lap Length Is	7.83–35.75 in.	
Bar Diameter <i>d_b</i>	0.75–1.41 in.	
Splice Spacing <i>s_l</i>	0.75–8.11 in.	
Minimum of Side and	1.42–3.26 in.	
Top Cover c _{min}		
Concrete Compressive	3.26–5.86 ksi	
Strength fcm		
Splice Strength f_S	38.9–81.0 ksi	

Development Length Equations Considered

Development Length Equations Examined as Basis for Hooked Bar Lap Splice Equation

Reference	Development Length Equation	Recast Equation for Stress
ACI 318-19	$I_{dh} = \frac{f_y \Psi_e \Psi_r \Psi_o \Psi_c}{55\lambda \sqrt{f_{cm}}} d_b^{-1.5}$	$f_{s,ACI} = \frac{55\lambda\sqrt{f_{cm}}I_s}{\psi_e\psi_r\psi_o\psi_cd_b^{-1.5}}$
AASHTO 9 th Ed.	$I_{dh} = \frac{f_y \lambda_{cw} \lambda_{rc}}{50 \lambda \sqrt{f_{cm}}} d_b$	$f_{s,AASHTO9} = \frac{50\lambda\sqrt{f_{cm}I_s}}{\lambda_{cw}\lambda_{rc}d_b}$
AASHTO 10 th Ed.	$I_{dh} = 0.17 d_b \lambda_{rl} \lambda_{cf} \lambda_{rc} \left(\frac{f_y - \frac{F_h}{A_b}}{350\lambda f_{cm}^{0.25}} \right)^2$	$f_{s,AASHTO10} = \frac{F_h}{A_b} + 350\lambda f_{cm}^{0.25} \sqrt{\frac{I_s}{0.17\lambda_{rl}\lambda_{cf}\lambda_{rc}d_b}}$

Evaluation Approach: Test-to-Calculated Stresses

- Can divide experimental stresses f_s by calculated stresses using any of the design equations (e.g., $f_{s,AASHTO9}$) to calculate the test-to-calculated stress ratio (e.g., $f_s/f_{s,AASHTO9}$)
- Perfect agreement: $f_s/f_{s,AASHTO9} = 1.0$
- Conservative: f_s/f_{s,AASHTO9} > 1.0
- Unconservative: f_s/f_{s,AASHTO9} < 1.0</p>
- Ideally, minimize COV of $f_s/f_{s,AASHTO9}$

Sample Plot of Test-to-Calculated Stress Ratios (Slope of 0 is Ideal) Mean = 1.87 COV = 0.20 **ACI 318-19**

Mean = 1.24COV = 0.23AASHTO 9th Edition AAS

Mean = 1.26COV = 0.13AASHTO 10th Edition

Design Equation for Required Splice Length of Hooked Bars

Regression...

$$I_{S} = \left(\frac{f_{y}^{1.5} s_{l}^{0.05}}{8,000\sqrt{f_{C}'} \left(\frac{c_{min}}{d_{b}} + \kappa_{tr}\right)^{0.33}}\right) d_{b}^{1.5}$$
 [Ib, in.]

- *I*_S: lap length of hooked bars
- f_V : yield strength of reinforcing bars
- s_l: inter-splice bar spacing
- d_b : diameter of reinforcing bar
- f_{C} ': specified concrete compressive strength
- cmin: minimum clear cover
- *K*_{*tr*}: index of transverse reinforcement

Design Equation for Required Splice Length of Hooked Bars

Section through Splice

$$I_{S} = \left(\frac{f_{y}^{1.5} s_{l}^{0.05}}{8,000\sqrt{f_{c}'} \left(\frac{c_{min}}{d_{b}} + \kappa_{tr}\right)^{0.33}}\right) d_{b}^{1.5}$$
 [lb, in.]

- Is: lap length of hooked bars;
- f_V : yield strength of reinforcing bars
- s_I: inter-splice bar spacing
- db: diameter of reinforcing bar
- f_{C} ': specified concrete compressive strength
- cmin: minimum clear cover
- K_{tr} : index of transverse reinforcement

Transverse Reinforcement, K_{tr}

N: number of legs of transverse reinforcement within one outer bend diameter from the top of the hook; A_{tr1} : area of one leg of transverse

reinforcement

Example

N = 4 (4 ties within lap length)

$$K_{tr} = 6.5(4)A_{tr1} = 26A_{tr1}$$

Design Example: Precast Bent Cap

Determine Required Splice Length

of Hooked bars

- Similar to Hampton Roads
 Bridge Tunnel Expansion Project
- Design parameters
 - ♦ Cap Width, b = 72 in.
 - Required steel, $A_{s,req} = 15 \text{ in}^2$
 - Cover, $c_{min} = 2$ in.
 - ♦ Concrete strength, $f_c' = 6$ ksi
 - Normalweight concrete

Closure Joint

Closure Joint Containing Hooked Splices Connecting Precast Pieces

Preliminary Considerations

Use 10 pairs ($N_{bs} = 10$) of spliced No. 11 ($d_b = 1.41$ in.) hooks in primary layer of reinforcement

$$s_l = \frac{b - 2c_{min}}{2N_{bs} - 1} = \frac{72 - 2(2 \text{ in.})}{2(10) - 1} = 3.58 \text{ in.}$$

$$\theta = \tan^{-1} \frac{3d_b}{s_l} = 50^\circ$$

 $T = A_b f_y = (1.56 \text{ in}^2)(60 \text{ ksi}) = 94 \text{ kips}$

$$T_{tie} = \frac{0.25T}{\tan \theta} = 20 \text{ kips}$$

$$A_{tie} \ge \frac{T_{tie}}{\phi f_{yt}} = \frac{20 \text{ kips}}{0.9(60 \text{ ksi})} = 0.37 \text{ in}^2$$

Required Hooked Bar Splice Length

Use two-bar bundles of No. 4 bars as tie reinforcement

$$K_{tr} = 6.5 NA_{tr1} = 7.5(5)(0.4 \text{ in}^2) = 13$$

 $\frac{c_{min}}{d_b} + K_{tr} = \frac{2}{1.41} + 13 = 14.4$; Limited to 8.0 for splice length equation

$$I_{S} = \left(\frac{f_{y}^{1.5} s_{l}^{0.05}}{8,000\sqrt{f_{C'}} \left(\frac{c_{min}}{d_{b}} + \kappa_{tr}\right)^{0.33}}\right) d_{b}^{1.5}; I_{S} = \left(\frac{60,000^{1.5} 3.58^{0.05}}{8,000\sqrt{6,000}(8)^{0.33}}\right) 1.41^{1.5}$$

$$I_{S} = 21 \text{ in.}$$

What if the Design Used Only Straight Bars?

Use the same bond and anchorage parameters to calculate the required lap length per Article 5.10.8.4.3 of AASHTO LRFD (2020)

$$V_{s}=1.3\times2.4d_{b}\frac{f_{y}}{\sqrt{f_{c}}}\left(\frac{\lambda_{rl}\lambda_{cf}\lambda_{rc}\lambda_{er}}{\lambda}\right)$$

$$V_{s} = 1.3 \times 2.4(1.41) \frac{60,000}{\sqrt{6,000}} \left(\frac{1.3 \times 1 \times 0.4 \times 1}{1}\right) = 56.0 \text{ in.}$$

Design Summary:

 The required straight bar splice length is 56.0 in., ~ 35 in. longer than that required for the hooked splices

Conclusions

- Noncontact hooked bar lap splices transfer force through diagonal compression struts and tension ties transverse to the lapped bars
- The ACI 318-19, AASHTO LRFD (9th ed.), and AASHTO LRFD (10th ed.) development length equations were found to be ineffective to design hooked bar lap splices
- Based on test results from 54 beam specimens, a design equation for the minimum required lap length of hooked bars was developed with a COV of test-to-calculated stresses of 7%

Department of Civil and Environmental Engineering

Structural Engineering and Materials

Are there any Questions at this Time?

References:

VIRGINIA TECH

American Association of State Highway and Transportation Officials (AASHTO). 2020. *LRFD Bridge Design Specifications*. 9th ed. Washington, DC: 1,867 pp.

American Concrete Institute (ACI). 2019. *Building Code Requirements for Structural Concrete (ACI 318-19).* Farmington Hills, MI: 623 pp.

Bayrak, O. 2023. "Approved Changes to the Ninth Edition AASHTO LRFD Bridge Design Specifications" Reinforcing Bar Anchorage," Aspire Winter 2023: 4 pp.

Parastesh, H., I. Hajirasouliha, and R. Ramezani. 2014. "A New Ductile Moment-Resisting Connection for Precast Concrete Frames in Seismic Regions: An Experimental Investigation," *Engineering Structures* 70: pp. 144–157.

Department of Civil and Environmental Engineering

Structural Engineering and Materials

The Following are Extra Slides to Address Questions

VIRGINIA TECH

Approach to Developing New Equation for Hooked Bar Lap Splices

All three of the hooked bar development length equations were deficient in some manner and could be improved

 Will develop an empirical equation for the strength of hooked bar lap splices using the same database and multivariable power regression
 Select powers (p₁) to minimize sum of squared differences between experimental and predicted splice strength:

$$f_{s}^{p} = p_{1} I_{s}^{p} 2 f_{cm}^{p} 3 d_{b}^{p} 4 s_{l}^{p} 5 \left(\frac{\text{Cover} + K_{tr}}{d_{b}}\right)^{p_{6}}$$

• Transverse reinforcement term, K_{tr} , also determined using regression

Descriptive Equation for Strength of Hooked Bar Lap Splices

Performance of Descriptive Equation

Question: How well does the equation characterize strength?

✤ Mean test-to-calculated stress ratio = 1.00; COV = 0.06

Design Equation for Splice Strength

- Need to convert descriptive equation to design equation through simplification and use of safety factor
- Simplification: replace cover term with minimum cover, c_{min}
- Safety factor: could use Φ = 0.90; use 0.75 to ensure all bars yield.
 Needed because edge bars carry less force

Design Equation for Splice Strength (cont.)

Includes Phi
Factor
$$f_{S}^{\rho} = \frac{400/s^{0.67} f_{cm}^{0.33} \left(\frac{c_{min}}{d_b} + K_{tr}\right)^{0.22}}{s_l^{0.033} d_b^{1.00}}$$

Mean = 1.33; COV = 0.07; 0% predictions < experimental strengths

Rearrange to solve for splice length as a function of splice strength.

$$I_{s} = \left(\frac{f_{y}^{1.5} s_{l}^{0.05}}{8,000\sqrt{f_{c}'} \left(\frac{c_{min}}{d_{b}} + \kappa_{tr}\right)^{0.33}}\right) d_{b}^{1.5}$$

Perpendicular Ties Should not be Within $1d_b$ from Splice Ends

Range of Possible Tie Locations

Use Parametric Study in Nonlinear FE Analysis to Investigate

Transverse Reinforcement, K_{tr}

$$K_{tr} = 6.5 NA_{tr1}$$

N: number of legs of transverse reinforcement within one outer bend diameter from the top of the hook;

A_{tr1}: area of one leg of transverse reinforcement

Parallel Confining Reinforcement

Within one outer bend diameter from top

Example

N = 6 (3 ties within hook diameter, 2 legs per tie)

$$K_{tr} = 6.5(6)A_{tr1} = 39A_{tr1}$$

Parallel Ties Should not be Outside Outer Bend Diameter

 f_{tie} = average stress in legs of tie transverse to splices $f_{tie, 1}$ = value of f_{tie} in Tie Number 1 (near top of hook)

Transverse Reinforcement, K_{tr}

$$K_{tr} = 6.5 NA_{tr1}$$

N: number of legs of transverse reinforcement within one outer bend diameter from the top of the hook; A_{tr_1} : area of one leg of transverse reinforcement

Transverse (Lacer) Bars

Example

N = 2 (Legs confining the edge hooks)

 $K_{tr} = 6.5(2)A_{tr1} = 13A_{tr1}$

