PAPER NO. & Information from six experimental
investigations for the side and bottom crack width
of flexural members were analyzed statistically with
the aid of a computer. A large number of equations
and variables were examined. Two equations were
proposed that best fit all the experimental data to
predict the most probable maximum crack width
in reinforced concrete flexural members.

Maximum Crack Width in
Reinforced Concrete
Flexural Members

By PETER GERGELY and LEROY A. LUTZ

B A NUMBER OF INVESTIGATIONS in recent years were concerned with
the cracking of reinforced concrete members. This interest has been
stimulated by a trend toward the use of higher strength steels. In spite
of these studies, the factors affecting the spacing and width of cracks
are still not known for all conditions, and certainly not agreed on among
different investigators.

Various semi-theoretical and experimental equations have been pro-
posed by others that contain different variables. A short review of the
most important studies is given in Ref. 1. Some of the features of these
investigations will be discussed in this paper.

The width of cracks is subject to relatively large scatter, which makes
it difficult to tell which equation is best for predicting these quantities.
Also, the different characteristics of each investigator's specimens and
the indirect effects of many of the variables result in differing con-
clusions. For these reasons, an extensive statistical evaluation of data
from six different investigations has been made and is reported herein.
The previously proposed equations are compared and new equations
are proposed as the result of correlation and regression analyses.

Most investigators have reported only the maximum and average
measured crack width at certain stress levels. For this reason, a complete
statistical analysis based on, say, a 5 percent probability of a certain
maximum crack width for a member, was not possible.
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The maximum reported crack width in a beam at a given stress
level has been used. The average crack width might have been more
convenient to study, but different investigators used diverse criteria
in considering average crack width. Some included only primary cracks,
while others (for example Broms®) considered all cracks observed.
Furthermore, it is not the average but the maximum crack width that
is of practical importance.

As a result of this study, two alternative pairs of simple formulas
are proposed for predicting maximum crack width. The correlation of
either pair with all data that have been studied appears to be significantly
better than any of the previously published equations.

All dimensions are in inches, all areas in square inches and all stresses
in ksi. The crack widths are given in thousandths of an inch throughout
this paper. The cube concrete strength values, where used, have been
converted to cylinder strength by using a factor of 0.85. All symbols
are defined where they first appear and are listed in the Appendix.

SUMMARY OF CORNELL WORK ON MACROCRACKING

Investigations of macrocracking of concrete at Cornell University
were started by B. B. Broms and results were published in a number
of papers.>? The purpose of the study was to obtain detailed funda-
mental information on the cracking in concrete members reinforced with
modern high strength bars.

The analytical and experimental investigations of tensile and flexural
members showed that the primary crack spacing depended mainly on
the maximum cover of the steel reinforcement. Since the strain in the
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cracked concrete is small, the crack width at a given steel stress is
proportional to the crack spacing. Thus, the crack width was found
to vary directly with the distance from the nearby bar. Watstein and
Mathey* noticed that the crack width increased with distance from
the reinforcement in tests of axially reinforced tensile specimens.

A number of crack width theories contain D/p as a primary variable.
Tests by Broms showed that D/p and also D/p. (p. is the effective rein-
forcement ratio based on area of concrete located symmetrically about
main reinforcement) may be very poor variables; tests with different di-
ameter bars but with the same p, and p resulted in similar crack widths.
Also, T-beams with equal D/p and D/p. ratios gave different crack
widths, depending on the arrangement of the reinforcement in the flange.

In a test series by Hognestad! the crack width increased nearly in
proportion to D/p for old type deformed bars and plain bars, while
for the new type deformed bar the crack widths were appreciably lower
and increased only slightly with increase in bar diameter.

The ratio D/p as a variable corresponds to the postulate that the
total bar perimeter is a major factor in determining the crack width.
This is not the case with modern deformed bars because of their excellent
bond characteristics.

A large modern deformed bar is able to produce a crack spacing equal
to about twice the maximum cover over the reinforcing bar, which is
close to the limit that can be obtained. Broms concluded from his ana-
lytical work that the crack spacing should be about 1.5 times the
maximum cover. Replacing the large bars with smaller bars and main-
taining the same cover, it is found that the use of smaller bars does
Jittle to reduce the crack spacing. Thus, the bar diameter by itself is
no longer a prime variable.

The other variable in the bond perimeter, the number of bars, was
proven to be a significant factor in determining the crack width, inasmuch
as it dictates the concrete cover indirectly. Research done at the
PCAL 56 concluded from beam tests with modern deformed bars that

that the quantities \/A and/or +\/A were major variables, where

A, . . . .
A= —n—l'— (A, is the area of concrete surrounding the main reinforce-

ment and having the same centroid; m is the number of bars used;

see Figure 6-2). However, \/A can also be interpreted as a distance
which depends on the combined effects of the bottom and side covers,
the bar spacings and the number of bars.

Broms’ last series of tests consisted of tensile specimens which showed
some of the shortcomings of using the variable A. Using 4 bars in various
arrangements within a constant concrete area A,, the crack width was
found to vary with the steel arrangement. Also, when a No. 8 bar_was
replaced by 4 No. 4 bars an inch apart (thereby reducing VA by
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one-half), there was very little difference in the cracking pattern and
crack width.

The quantity \/A appears to be a significant variable if the steel is
uniformly distributed throughout the effective area of concrete, making
the crack width approximately uniform at all points on the surface of
the concrete. This is also true for variables such as D/p., D/p, etc.
since they do not consider the variation in the width of any one crack
along the surface of a specimen.

Broms’ investigation, based almost exclusively on testing tension mem-
bers, resulted in the following expression for the maximum crack width:

Wmax — 4t e (l)

where e, is the strain in the steel, and t. = t, the distance from the point
in question on the surface (e.g., C in Fig. 6-1) to the nearest reinforcing
bar, if that point is not between two reinforcing bars (between points
A and B). Between two bars (e.g., at point D) t. = \/¢* +e*

1 1 162

1 s
where — = — + — or e = —= when — > 1.
(¢4 €1 (&) S C

If <1 then t. = c between A and B.

S
c
If the crack width is to be measured at the bottom face of the beam,
the steel strain must be corrected to the “strain” at the bottom face:
wy, = 4 te R (2)

where R is equal to hu/hy, the ratio of the distances from the neutral

—

Figure 6-1 Reinforced concrete member showing terms used to define the
effective cover, t,
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Figure 6-2 Dimensional notation

axis to the bottom face and to the centroid of the reinforcement
(see Figure 6-2).

MAJOR VARIABLES AND EQUATIONS

Various investigators proposed a somewhat bewildering variety of
independent variables on which the crack width and crack spacing
is supposed to depend. These are here briefly reviewed. The primary
variable is, of course, the steel stress f.. Most investigators use f; to
the first power. Broms has used the steel strain because he included
crack widths at stresses larger than the proportional limit of the re-
inforcement.

The second major variable, the multiplier of the steel stress, takes
a variety of forms. One of the earliest and most often mentioned is
the ratio of the bar diameter to the reinforcement ratio, D/p, which is

equivalent to 4—;;, b being the width of the beam in the compression

zone, 30 the total bar perimeter. A similar ratio pR = 4;‘; has also
t
4A,

3o

P-4

. . D .
been considered, as well as the ratio — = . A is the area of

o
concrete in tension (below the neutral axis). These expressions differ
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in the definition of the participating area of concrete surrounding the
reinforcement.

Based on experimental evidence, formulas were proposed in which
the influence of the above expressions was variously modified in the
following ways:

D C.

T (Ref. 5), (Cy + )D (Ref. 7)
\/Pe pe
h —d D D

d . F (Ref 8) or (C1 + C-_n ?) (Ref 9)

In all of the above expressions, for a given percentage of steel
(p, pt or p.), the crack width increases with the bar diameter. Recent
investigations in the United States® * * 5 however, have indicated that
the diameter is not a pertinent variable. Actually, one of the expressions

. . D ...
in the above list does not depend on D, namely == which is equal to

/i ée—, and is independent of D. The term 1/ A VA is one of
V7V m m

the variables recommended by Kaar and Mattock, the alternative being
\/A. Of course, A is usually larger when D is large, but this need
not be the case.

Broms has recommended the use of the variable t., which is an
effective distance from any point on the beam surface to the centroid
of the nearest reinforcing bar. This is the only variable that considers
the variation of the width of the crack along the surface of the member.

In this investigation, these and a number of other variables were
examined statistically and it was determined which of them do a rela-
tively better job in predicting the maximum crack width for most
situations.

Some frequently used equations for the determination of the maximum
(in one case average) crack width in thousandths of an inch (where
numbers are given), are:

Broms:2 3

W = %} =4t e = 0133 t. £, (3)

(e is in milli-in/in)

Kaar-Mattock:?

Wy = V;{" = 0.067 \/A f. (4)
we = b — 0115 "\ A {, (5)

R
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Comité Européen du Béton (CEB):"
0.40 , Df,

Whax — (45 + Pe ) 470 (6)
Clark:*
h—d, D, 1
7 o 22 —\k -
Wae = 0.0227(54—) (f — 0.0566(— - + n)) (7)

Wax — 1.64 wave

Borges Lima:®

Wax — (Cl + C:’%>fs (8)

Riisch (Presented in lecture at Cornell University )

1D,
Wmax — —a P fs (9)
Whax — (Cl + CQ B)f\ (10)
Pt
Brice:?
Wax — Cl lli_o_l/ D fs (11)
Pe
Swedish: !
f. 1%
Wax — C, D [ s] (12‘>
P

DESCRIPTION OF DATA

The data used in this study were obtained from the investigations by
Broms (taken from original data of the tests described in Ref. 2),
Hognestad,! Kaar and Mattock,” Kaar and Hognestad,® Clark,® and
Riisch and Rehm.!? All these investigations used only reinforcing bars
that satisfied the ASTM A-305 standard on bar deformations, with two
exceptions: 1) 7 of 36 beams tested by Hognestad were not considered
because they had bars that did not conform with the A-305; 2) only
beams having bars with transverse lugs similar to American bars were
considered from the Riisch-Rehm investigations (Querrippenstahl, Nori-
Stahl, Noreck-Stahl, old Hi-Bond-Stahl). However, a few beams with
bars having a deformation spacing somewhat greater than 0.7D (up
to 0.85D) were included, even though, for this reason, they did not
precisely satisfy A-305.

The maximum side crack width at the level of the centroid of the
tensile reinforcement taken from references 1, 5, 12, and from Broms’
work, and the maximum crack width on the bottom face of the beam
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taken from references 1, 5, 6, 8, 12, were analyzed separately. In fact,
the results from each investigation were studied separately, because each
investigator used somewhat different methods. Some of these differences
are listed below:

a) Kaar and Hognestad® used measured instead of calculated stress
values.

b) Kaar and Mattock® used a measured stress value at a place where
a “crack former” was used and presumably measured the maximum
crack width at this location.

¢) Clark® measured the bottom crack width with Tuckerman gages;
their precise location was not reported.

d) Riisch and Rehm?!* measured the bottom crack widths directly
below a reinforcing bar, while Hognestad determined the crack widths
between two bars.

The maximum crack width measured by an investigator at a certain
stress level is considered statistically as an observation. If the maximum
crack width is measured at 6 stress levels, there will be 6 observations
resulting from this one beam test. Since an investigator measures the
cracks at about the same number of stress levels for every beam, there
is little weighting of one beam over the others in an investigator’s sample.

A number of observations were removed from the total population
because of unusual characteristics. If the stress in the reinforcement
exceeded 80 ksi, or it appeared obvious that the steel had yielded
(evidenced by an exceptionally large increase in the maximum crack
width) the observation was omitted from the analysis. Readings at
steel stresses below 14 ksi were omitted, except in the Kaar-Mattock
data where a crack former was used.

Two beams, 11.8 in. wide and 23.6 in. deep, reinforced with a single
bar, were removed from Riisch-Rehm’s sample because of the impractical
nature of the information and of the distortion caused by this erratic data.

A total of 33 observations were thus removed for various reasons;
the total number of observations used in this study was 612 for bottom
cracks and 355 for side cracks. In order to give an idea of the number
of specimens used and their properties, the principal characteristics of
the total population are summarized in Tables 6-1 and 6-2. Averages
are given only where there is enough variation to make it meaningful.

DESCRIPTION OF STATISTICAL ANALYSIS

The large number of data and the contribution of the various variables
can best be studied by statistical analysis. A Multiple Regression Analysis
computer program was used for this purpose. The output consisted of
the totals and means, the uncorrected sums of squares, the standard
errors, the correlation matrix, the regression coefficients and their stan-
dard errors, etc. In addition, with the help of separate Fortran programs,
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the distribution of the input data and the percentage deviations of the
measured values from the experimental values were determined.

A regression analysis determines the cocfficients of a lincar expression
that best fits a given set of experimental data by a least squares of
deviations criterion. By suitable transformations of the variables, other
than linear expressions can be analyzed. For example, by taking the
logarithms of the variables, equations containing exponential terms are
created. The goodness of fit is measured by the correlation coefficient,
which is unity if a perfect linear relationship exists between the variables.

In some cases, stepwise regression was employed, in which case first
one, then two, then three or more independent variables were included
by the program. The criterion for selection of the first independent
variable is that the best correlation with the dependent variable is
obtained; the other independent variables are then combined linearly
to account as much as possible for the variation in the dependent var-
iable. The contribution of a variable or of a combination of variables
can be studied in this manner.

From the statistical analysis, various forms and combinations of vari-
ables were obtained; for example, \/t\/A. The numerical constants in
the various crack width equations containing these composite variables
were obtained from the aforementioned Fortran program.

This constant, C, for the equation w. = CX is given by
3w X
C= X2 (13)

where X is the composite independent variable, e.g. /A f.. The measure
of gaodness of the correlation is expressed by the standard error, o

S(w, — w.)*
o = N1 (14)

which is analogous to the standard deviation and has similar properties.
Since it was observed that the error w, — w. generally increased with
stress, the relative standard deviation (in percent)

g
3

Wo — W
( 0 « ):
wo\/ . We

N -1
was also calculated.

RESULTS OF STATISTICAL ANALYSIS

The statistical analysis was used to examine the scatter of the data
from the various investigations, the peculiarities of some variables and
equations, the relative merits of the various crack width formulas, and
the practical value of the different equations. Before discussing the
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various equations and variables, some general comments will be made
about the accuracy possible in predicting maximum crack widths.

Scaiter of crack width data

With the observations consisting of the maximum observed crack
widths at various loads, the equations resulting from the statistical
analysis will predict the most probable maximum crack width of the

TABLE 6-3 MAXIMUM BOTTOM CRACK WIDTH EQUATIONS

Composite | Kaar- \ Kaar-

Independent Hognestad N Riisch-Rehm Mattock® ‘ Clark Hognestad®
Variable, X | |
‘ Ct ot Cy ot ] Cyt gt | Ct ot Ct ol
1 Best Fit with fs — 1.92 — 1.49 [ —_— 1.25 — 0.78 — 1.27
2 Rfs .268 5.66 | .218 3.31 |.293 4.17 1 .1890 2.42 |.1762 2.05
3 tv Rfs 0934 3.35 | .1382 4.16 |.1732 3.53 | .1301 2.38 | .1439 2.05
4 \/’HRfs 1727 3.41 |.1772 3.60 | .226 3.81 | .1690 1.83 | 1762 2.05
5 VARfs 0612 3.41 |.0676 2.85 |.0776 3.35|.0564 1.68 ‘ 0494 2.53
6 “VA Rfs 1319 4.31 |.1229 2.96 |.1597 2.23 | .1060 1.85 | .1043 2.21
7 3Vty ARfs 0714 3.15 | .0880 3.11 |.1047 2.54 | .0767 1.65|.0711 2.30
8 te,, Rfs 0890 2.61 |.1109 3.07 |.1320 3.07  .1113 2.12 |.0964 2.36
9 Vitr VA Rfs 0767 3.12 |.0994 3.33 |.1203 2.42 | .0885 1.76 |.0851 2.21
10 Vsitn Rfs 0885 3.31 | .0869 3.29 |.0999 3.62  .0798 1.68 |.0695 241
11 *vs1tn? Rfs 0930 2.67 |.1043 3.37 |.1238 2.82 |.0967 1.65 |.0892 2.23
12 *vs1tv (h—d) Rfs 0930 2.67 | .0993 3.58 |.1138 2.65|.0967 1.65  .0888 2.20
13 L) Rfs 00805 3.36 | .00968 4.13 | .00787 6.39 | .01018 2.52 | .00416 3.23
14 (11.25+ pL) DRfs 00646 2.95 | .00745 3.24 |.00691 5.29 ; .00691 1.92 |.00378 3.06
B
15 (50 + pL) DRfs 00369 3.56 | .00376 3.42 | .00462 3.61 | .00317 1.64 | .00287 2.69
16 (150 + pi) DRfs 00169 4.59 | .00157 4.14 | .00237 3.39 | .00130 1.69 | .00174 2.35
17 p,% Rfs 00408 5.40 | .00239 2.61 | .00365 6.43 | .00358 3.07 | .00225 3.42
18 /2 Rfs 0354 553 .0278 2.84 ' .0485 273 | .0306 1.74 | .0323 2.65
VDt
D -
19 \/—P—t Rfs 0331 5.53 |.0236 2.53 |.0364 3.76 | 0.274 2.42 |.0228 2.61
20 (30 + p—lt) DRfs 00292 5.47 | .00196 2.43 | .00315 4.79 | .00252 2.22 | .00197 3.16
. 21 (100 + -pl—t) DRfs 00175 5.54 | .00134 2.80 | .00227 2.87 | .00143 1.71 | .00152 2.78
22 (300 + pl_t) DRfs .00082 5.60 | .00068 3.68 | .00118 2.61 | .00063 1.65 | .00090 2.38
23 —I]%(fs —.0566 (—;—-— n)) R| .00927 3.11 | .01387 3.86 —x —x | .0125 2.08: —x —x
24 3vVtb A (fs-5) R .0824 2.86 | .0993 3.05 —x —x ! .0911 1.59 \ —x —X
! |

# f<m used in place of fs for the variables listed.

+ Numerical Constant in crack width equation (see Eq. 13).

I Standard Error of crack width equation (see Eq. 14).

x Since it was found that fsm is essentially proportional to the crack width (see section 6—‘Steel
stress as a variable” ), terms of the form fsm — K were not considered for these investigations.
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TABLE 6-4 MAXIMUM SIDE CRACK WIDTH EQUATIONS

Composite Hognestad
Independent and Broms Riisch-Rehm Kaar-Mattock®
Variable, X Ct ot C - C 7
1 Best fit with £ — 1.09 — 1.36 — 1.02
2 fs 1829 2.54 .1986 2.74 269 271
3t fo 0858 2.33 1295 2.48 1079 448
4 \/’t—= fs .1364 1.78 1612 257 1875 258
5 \/X f. 0521  2.96 0651 229 0735 273
6 "\/K fs 1018  2.50 1157 2.35 1482 1.83
7 ts VA f, 0725 213 0927 2.30 0911  3.52
8 4\/ts \/X f, 1198 2.06 1369 2.44 1677 2.13
9 Vs A fy 0660 2.35 .0826 2.27 .0853 3.22
10 Vs A fs 1138 2,19 1295 241 1611 2.01
D
11 D f, 00775 3.53 01188 2.36 00751 4.38
12 (11.25 + 71—)1)12 00589 3.14 00798 2.15 .00658 3.73
pe
13 (50 + 1)Df, 00306 295  .00356 271 00440 2.84
Pe
14 (150 + L)Dﬂ .00133 3.06 00143 3.15 00226 2.82
Pe
15 D f, 00330 3.32 00242 2.26 00328 4.37
Pt
D
16 — fs .02925 3.02 0261 2.22 0443 231
V't
—
IVAVALLEN S 0263 256 0232 187 0329 249
Pt
18 (30 + -L)Dfs .00239 3.05 00193 2.03 .00284 3.46
Pt
1
19 (100 + E)Dﬂ .00141 2.98 00127 222 00207 2.49
20 (300 + 1 ) Df 00064 3.07 00062 2.77 00111 243
jors

* fsm used in place of f, for the variables listed.
T Numerical constant in crack width equation (see Eq. 13).
# Standard error of crack width equation (see Eq. 14).



TABLE 6-5 MAXIMUM sIDE CRACK

CONSIDERING THE INFLUENCE OF t./h,

these investigations.

WIDTH EQUATIONS

Composite Hognestad
Independent and Broms Riisch-Rehm Kaar-Mattock®
Variable, X Ct 4t T Cc C e
1 tf, .0935 205 1295 248 1079 4.48
2 \tst 1107 1.84 1379 2.48 1608 2.61
I 1 2/3 t./h !
3 t”\h 1189 177 1421 2,49 1780 2.34
1 + ty/h,
tf
 J— L R 1309 1.69 1483 249 1992 2.30
1+ 3/2 t,/h,
5 VAf, 0496 2.96 0651 2,29 0735 273
VA
6 —= . 0577 2291 0693 298 0960 1.93
1+ 2/3 t/h,
7 VA 0615 2.20 0715 298 1032 215
1 + ti/h,
8 —& s 0671 221 0747 2297 1123 259
1 + ts/h,
9 Vit /A £ 0709 1.87 0927 230 0911 3.52
t
10 — 5 0832 1.71 0988 2.29 1273 1.84
0 1+ 2/3 ts/h,
\ / tS
11 -—ﬁ fs 0891 1.66 1018 2.29 1389 1.78
1 + ty/h,
ts
12 VB VA 0976 1.62 1063 2.29 153 2,00
1+ 3/2 t./h,
13 VA f, 0636 1.94 0826 22927 0853 3.22
VA
14 Vi, s 0743 1.81 0880 2.26 1165 1.75
1+ 2/3 t./h ’
15 VEA 0795 178 0907 2.6 1265 1.80
1+ t./h,
VEA - - ,
16— VGtA 0870 1.7 0947 2.26 1388 2.09
T+ 3/2 tu/h, 2 !
\/ tsVA f, 08045 1.68 0945 229 1308 221
VT s
VA
18 — VA fs - 5 0847 1.82 0989 2.26 —X  —x
1+ 2/3 e/hy ) o
19 VEA e o 0906 1.79 1020 296 - —x
1+ t./h,
/ts
20 VEVA 5) 1015 1.67 1144 230 -
1+ ts/h,
S —_— — —
* fom used in place of f, for the variables listed,
¥ Numerical constant in crack width €quation (sce Eq. 13).
¥ Standard error of crack width equation (see Eq. 14).
x Since it was found that f,.. is essentially proportional to the crack width (see section
6—"Steel stress as a variable”) | terms of the form f,,, - K were not considered for
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sample. Even using the best equations, the scatter in the data was
found to produce maximum crack widths that range from less than
% to more than 1% times the most probable maximum crack width. Ap-
proximately % of the cracks will be within 25 percent of the most
probable value. To evaluate this scatter, the standard error o is used.

In comparing the standard errors for the various expressions (Tables
6-3, 6-4, and 6-5), it appears that the numerical differences are not
great. The following considerations should be noted:

a) Using f; or any other similar variable, perfect correlation cannot
be obtained even for a single beam. Using the best fit line for every
beam separately with f, as the variable, the standard error for each
investigation (i.e., considering all beams), was found and is given in
the first row of Tables 6-3 and 6-4. This is the absolute minimum error
possible with f, as the variable.

b) In most of the investigations, the concrete cover was kept nearly
‘constant and the steel was well distributed. This makes the standard
“error for f; (or Rf) relatively low and makes possible improvement
small. For instance, for Hognestad’s bottom crack data, representing
extensive variation in the distribution of the steel, the modifying variable
can produce a 0.003 in. reduction in the standard error, but generally
the improvement in the standard error is less than 0.001 in.

¢) Due to the random nature of cracking, variations occur in the
maximum crack widths which cannot be accounted for by the properties
of the beams.

Thus, one portion of the error represents the irregularities possible
in any one beam, the second portion is caused by the scatter from
beam to beam, and the third portion can be accounted for by the variable
that modifies f; (or Rf.).

Steel stress as a variable

The steel stress is the most important variable to be considered in
evaluating the crack width. Since the width of a crack is usually desired
at working loads, the elastic cracked section theory was used to evaluate
the steel stress, f.. This was done by Hognestad, Riisch-Rehm, Clark,
and Broms in their investigations. The other investigations used the
measured steel stress, fg,.

Regression analyses made on the proposed equations in logarithmic
form, give f; to a certain power. Clark’s and Riisch-Rehm’s bottom crack
data fit {1*° best, and Hognestad’s few bottom crack data fit f1-43,
Similar analyses for the two investigations using measured stress®
fun, showed that f., " and f.." provide the best fit for these sets of
data, respectively. Assuming that f. is approximately equal to f,, at
high stresses, it follows that f; is larger than f,, at low stresses. This
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agrees with the fact that a beam is not as fully cracked at lower
stresses as is assumed in computing f..

An examination of the side crack information reveals Hognestad’s
data to correlate best with £.!'37, while the exponent for the Riisch-Rehm
data was found to be 1.05 and for Kaar-Mattock’s data 1.08. No adequate
reason was found for the differences between the exponents for side
and bottom crack widths of a given investigation.

The crack width appears to be essentially proportional to the measured
stress, fo.; considering the calculated stress, f., this is not as true.
Between the stress range of 15 to 70 ksi, the variable {,* with 1<n<1.4
can be approximated by a straight line of the form f,—K. Regression
analyses using f* and a corresponding f. — K show approximately the
same accuracy.

The average K values found from the individual beams of the Riisch-
Rehm, Clark, and Hognestad bottom crack investigations are 7.3 ksi,
5.6 ksi, and 7.3 ksi, respectively. For the side crack investigations, the
average K values were 4.1 ksi for the Riisch-Rehm beams, and 8.3 for
the Hognestad beams. Regression analyses found generally similar
values of K.

Clark’s equation, for example, considered K to be a function of the
reinforcement ratio, p. Examination of equations containing the term
f, — Ci/p:i (where p; presents p, p., or p;) show improvement in corre-
lation though no consistent value of C; could be found. C, was a
function of the investigation as well as the variable modifving the
term f, — C,/p:. An examination of the individual K values for an investi-
gation revealed that there was little correlation between K and 1/p;.

A plot of the equations using f,, f.", and f. — K for any set of data,
would show that the equations using f, overestimates the crack width
at low stresses and underestimates them somewhat at high stresses.
This is due to the fact that the variable is forced to pass through the
origin of a w — f, plot. The variable f, — K is more correct vet no more
difficult than f, to use.

The influence of the second variable, the multiplier to the stress
term is much more important than the differences between the stress
terms. Because of this, the values of the best modifying variables were
affected little by the choice of the form of the stress term. Therefore,
the analysis to find the best modifying variable was done using f.
The selection of the best value of K was then made using the best
modifying variables found for f..

Bottom crack width analysis

The crack width at the bottom of the beam is generally larger than
on the side of the beam. This increase is mainly due to larger extension
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of the bottom face than at the level of the steel. This strain gradient
is recognized by a correction factor R = h./h,. This has been proposed
by Broms and used by Kaar and Hognestad. If the tensile reinforcement
is well distributed and the side crack width is little affected by the
compression zone of the beam, the width of the side and bottom cracks
equations should be the same except for the ratio R in the bottom crack
equation. The suitability of such a multiplier is illustrated by the best
fit equations for the Riisch-Rehm data:

we = 00232 \/ Doy w = 00236 \/P— CRE (16)
Pt Pt

A large sample of the variables examined for the bottom crack width
is presented in Table 6-3.

Hognestad’s bottom crack data consists of 8 beams (32 observations )
with 2 No. 7 bars having a wide variation of side and bottom covers.
The crack width was measured at the beam centerline, midway between
the two bars.

Variables that considered the combined effects of the bar spacing
and the bottom cover produced the best correlation. The Broms-Lutz?
variable for crack width midway between two bars,

to = /62 + ()2 (17)

correlated best, while *\/sit,? was next best. Any stronger or weaker
influence of s with respect to t, significantly increased the standard

error. *\/t,A was a reasonably good variable; in this case it is equivalent
to t,2/%, since, for 2 bars in an 8 in. beam width, A = 8t,. The CEB

variable proved to ‘be better than the equation involving *\/t,A, but
since the bar diameter was the same in all specimens, the CEB variable

(45 + %—)D is equivalent to (4.5 +.665A) or (4.5 + 5.32t,).

These variables are significantly better than \/A or /A or

(which is equivalent to A for this investigation).

Clark measured the bottom crack width with Tuckerman strain gages
along some lines on the bottom face of 54 beams, 28 of which had 6 in.
overall depth; 19 had 15 in. depth, and 7 had 23 in. depth. In all of
‘the 6 in. deep beams, the bar spacing was twice the side cover. This
was presumed to be the case for the deeper beams, too. All specimens

had only one row of steel. For these reasons, A was equal to 2sit.

The three best variables were found to be *\/sit,? [or 3\/t,A], (50 +

pi)D, and (300 + %)D. The variables \/A (or \/2sit or \/tub),
e t
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D —
\?, Vb, Vti\/A, and the CEB variable were also quite good.
t

The Riisch-Rehm bottom crack data consists of rcadings from 23
specimens; of these 13 were 24.6 in. deep rectangular beams, 6 were
24.6 in. deep T-beams, and 4 were slabs.

The use of the ratio D/p; worked best for the Riisch-Rehm data,

the best variables being (30 + DL)D, IB)«, —D—, in that order. Variables
t

t Pt

independent of D, such as V? , VA and \/A were next best, followed
t

by t.,, Vtn/A, and 3\/t,A. It should be noted that t., should be
used for crack widths measured between two bars according to Broms-
Lutz? although the use of t., instead of t, did produce a marked
improvement for the Riisch-Rehm data where crack widths were mea-
sured below the bar positions. This indicates that the crack width
is dependent on the bar spacing even below the reinforcement.

The following characteristics of the Riisch-Rehm investigation should
be noted: a) The crack widths were measured below the bars; b) The
percentage of the steel was low, all beams having less than one
percent reinforcement; the average was 0.53 percent; c¢) The deformation
spacing of the bars is significantly larger than that found on American
modern deformed bars (Average spacing, ¢’D, is 0.69D as compared
with 0.46D in Ref. 1); d) The concrete strength was low (less than
2000 psi) for the majority of the beams; e) A considerable number
of the beams had more than one row of bars. These attributes are to be
remembered when comparing with other sets of data,

Kaar and Mattock determined the crack widths at measured steel
stress levels. The measurement was made by electrical strain gages
placed at midspan where a crack was forced to form. They tested
9 beams with the same effective depth, reinforced with 8 No. 4 bars
and having constant side and bottom cover; p, p. and A varied. They
also tested 4 slabs in which the size and number of bars were varied.
The maximum crack width was apparently measured wherever it
happened to occur on the tension face, regardless of its position
relative to the bars.

The variable “\/A was found to corrglaﬁ best; this was suggested
by the investigators. The expression \/t;\/A was second with /A
third best (t, was 2 in. for the slabs and 1.62 in. for the beams). The

quantities (300 + _l_)D, D , as well as *\/sit,> and t

Pt \Fpt
good variables.

Equations containing s and t, are good; however, equations using
A are better. This may well be due to the fact that most of the above

are also

“m
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specimens had more than one row of reinforcement, in which case
s and t, alone cannot present the complete picture.

Kaar and Hognestad’s investigation was concerned with the crack
width on the flange of T-beams over a support. Strain gages were
placed on the steel at the edge of the support diaphragm where the
largest cracks were likely to occur.

No variable was found that would improve the correlation for the
8 beams examined beyond that of using Rf.. Since t, was 1.50 in. for
all specimens, \/t, Rf,, t,Rf, etc. provided the same standard error

as Rf,. Other good variables were (20 + \/~)D VA, \/tb\/A 3\/st,2,

SVHA, (150 + —)D in that order. From the analysis it appears that

the bar spacing had little or no effect on the crack width. This was
not indicated by the other investigations. The different nature of the

specimens and the limited number of tests prevent more precise
evaluation.

Side crack width analysis

The maximum side crack width is analyzed independently of the
bottom crack width. Though it has been customary to represent the
two cases by one equation it is believed that there are differences to
warrant this separate treatment.

Broms’ investigations have indicated that the crack width is dependent
on the effective concrete cover, that is, the width of the same crack
changes along the surface of the member. Obviously, there may be
differences in the side and bottom cover. In beams, however, not only

v
Ah,

Figure 6-3 Definition of effective side cover, t,
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the location of the reinforcement, but also the location of the com-
pression zone affects the size of the side crack width at the level of
the reinforcement. It appeared during this investigation that an effec-
tive cover based on the actual side cover, t,, and the distance from
the reinforcement to the neutral axis, h;, might account for this influ-
ence. The result was an effective side cover, t., as shown in Figure 6-3.
This cover

fo = (18)
ts
1+ (-o)2
SV
is the distance from where the crack is measured to the line connecting
the two points of restraint. At first, it would seem that the distance

h; itself should be used, but available data seem to indicate that A

/
is less than one. The side crack width reduction factor, 1/ '\/ 1+ k.(;%)‘-’

was later simplified to an equally good expression, _ although
1+ ke }T]
the physical significance of t.., as defined, no longer holds. The influence
of this factor is investigated in Table 6-5.
In the investigations by Hognestad and Kaar-Mattock, where several
beams were tested with relatively large t./h; ratios, the improvement
in the standard error was clearly evidenced. For example, the term

Vta/A £, has a standard error of 1.87 for the Hognestad and Broms
VA £

3
1+ 5 ts/hl

larly, the standard error decreases from 3.52 to 178 by the use of

%ﬂ instead of \/to/A f, for the Kaar-Mattock data. Since
S 1

t,/h; is small and has little variation for the Riisch-Rehm data (h =
24.6 in. for all beams ), negligible improvement is noticed using 1 + k.t./h;
in the denominator of any variable.

The Hognestad and Broms data consisted of 36 beams, most of
which had an overall depth of 144 in. or 16 in., with a wide variation
in p, p., A and cover thicknesses. For these investigations, the variable
\/t; provided the best correlation. The variables \/A or H/A did little
or nothing to improve the standard error. Equations containing D/p.
or D/p: were also quite poor (Table 6-4). Considering the reduction

=
;‘*f“ , \/t? A f, and
L+ -t/he 1+ 5t/

data, while the term has a standard error of 1.62. Simi-

1
factor m 5 the terms
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SVEA f/(1 + %ts/hl) were found to be best (see Table 6-5). Since

two of Broms” beams were inverted T-sections, where crack widths were
measured on the ends of the flanges, these reduction factors do not
apply, hence six observations were omitted in preparing Table 6-5.
Riisch-Rehm tested beams with equal overall depth, low percentages
of steel, and low concrete strength. The variation of cover thickness
was moderate, the variation of A and p., was considerable. For this

set of data VpB was by far the best variable, with (30 + pi)D
t

t
second. The CEB expression ranked third, followed by /A, *\/tA,
and \/t\/A. The use of the variable t, alone in any form showed up
poorly. As mentioned before, the use of the reduction factor showed
negligible improvement.

Ve /A an VA
I+ t/h ° 1 + t/hy
were the best variables, followed closely by *\/A. Somewhat poorer
t

1+ 15

For the Kaar-Mattock side crack data

correlation was achieved using ®\/tA, *\/ta/A, and .
g t

hy

General discussion of results

Comparison of Crack Widths from Different Sources

In considering the variables for each investigation individually, the
standard error was the basis for evaluation, while in comparing the
results of the various investigations, the magnitude of the regression
coefficient becomes of importance.

For the bottom crack width study, the regression coefficient applying
to Clark’s data will be used as a basis for comparison. In order to
examine the differences between the crack width data from different
investigations, a variable is taken that is good for all five sets of data;
such a variable is 3\/t,A Rf,. Thus, one finds that the maximum crack
width from the Riisch-Rehm data is 15 percent larger, Hognestad’s and
Kaar-Mattock’s 7 percent smaller and Kaar-Mattock’s 37 percent larger
than Clark’s values. These percentages, of course, are somewhat different
for other variables, depending on how good the variables are.

A similar comparison with the side crack data taking Hognestad’s

VE/A
1 + t/h,
that Riisch-Rehm’s side crack widths are 14 percent larger, while Kaar-
Hognestad’s are 56 percent larger.

In general, Riisch-Rehm’s crack values are about 10 percent to 15

and Broms  data as a basis with f, as the variable shows
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percent larger than the American data (excluding those where the
measured stress was used® ©). It is believed that this difference is due
to the difference in bar deformation spacing, and to the fact that they
unloaded the specimens 14 times from a steel stress of 43 ksi before
proceeding to higher stresses.

The crack values of Kaar-Mattock’s tests are on the order of 40 to
50 percent higher than that of the other American tests (including
Kaar-Hognestad’s work where measured stresses were also used). This
difference seems to indicate that the maximum crack widths may have
been observed at midspan where the “crack former” was located. The
reported maximum crack widths at or below 5 ksi steel stress must
have been measured there, since the concrete would not have cracked
at a moment calculated from these steel stresses.

For the above reasons, and since the calculated stress has to be used
in practice, the results of Hognestad’s and Clark’s investigations were
used to determine the numerical constants in the recommended
equations.

Evaluation of Major Variables

The ratio D/p was not a very good variable in any form, especially
for T-beams, where bd greatly overestimates the actual concrete area.
The use of b’ instead of b in determining the reinforcement ratio would
be better.

The reinforcement ratio p; based on the area of concrete in tension,
was examined in some detail. The ratio D/p; in itself was a very poor

variable for all except the Rusch-Rehm data; even in this case g
N t
1 D
or (30 + —)D were better. =, which is independent of D, proved
Pe %

to be much better than D for the data of Clark and Kaar-Mattock.

None of these terms workeci well for the data of Hognestad and of

D
Broms; but if a variable involving p: is desired, the form \ /’f would

t
probably be best, considering all investigations.

The CEB variable (4.5 + %)D greatly overestimates the crack

width when p. is low. This is shown by the fact that the regression
coefficient of this variable for Kaar-Hognestad’s data is about half of
that for Riisch-Rehm’s data. Individual beams show the same trend.
To be sure, the CEB equation is to be used only for p. between 2 and
20 percent; however, actually p. is often below this range; 5 of 13 of
Kaar-Mattock’s beams, 7 of 8 of Kaar-Hognestad’s beams, and 11 speci-
mens from the other investigations had effective percentages less than
2 percent.
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The effect of p. can be reduced in two ways: by having an additive
constant (as above), which cannot work for the whole range of p.,
or by raising p. to a power less than one. Kaar-Mattock have shown

- D 04
that \/A (which is equivalent to =) is similar to (4.5 + "B“)D,

VP e

the deviation being less than 4 percent for p. values between 4 and
20 percent. Below p, = 4 percent, the equations begin to deviate. Con-
sidering the bottom crack data, \/A is significantly better for all but
Hognestad’s 8 beams. Nevertheless, also with \/A there is some tendency
to overestimate the crack width for low p., though much less than
with the CEB variable. This is why *\/A works well for the Kaar-
Mattock and Kaar-Hognestad data in which p. was notably small. This

) is evidenced in these two

investigations by the fact that the variable (150 +L)D is better

e
than the CEB variable (1125 + T)L)D.

The simplest approach to the determination of the crack width is
to use the cover thickness t, or t,, whatever the case may be, as
suggested by Broms. The cover thickness or its square root were shown
to be good in several of the investigations, especially for the side crack
data of Hognestad and Broms where \/t, was very good, but in other
investigations it was poor. Though the cover thickness is an important
variable, it is apparent that the crack width depends on other factors
in addition to t, or t,. This is substantiated by the improvement observed
in the correlation for variables that included the cover thickness, plus
the bar spacing or A. The variable A (or sit, for a single row of bars)
indicates the crack spacing, and t, (or t;) shows how this crack spacing
and thus the crack width is influenced by the actual location of the
reinforcement. In the case of the side crack width, the effect of the
location of the neutral axis on reducing the width is considered by

t
the 1 + kg h—]'

smaller dependence on A (i.e, on -

"

term in the denominator.

RECOMMENDED EQUATIONS

It is difficult to select an equation that fits well all sets of data.
An equation that is very good for one investigation and poor for other
data cannot be considered acceptable. Such an equation is usually
based on data of limited scope and often reflects the characteristics
of that particular investigation.

One important consideration is that the equation be dimensionally
correct. Since the stress term is used in lieu of the strain which is
dimensionless, the modifying variable should have the dimension of
length. If the equation is not dimensionally correct (e.g., if \/A, \/t,
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D - . : :
or — are the modifying variables) the size of the beam is a factor

t
in choosing the coefficient, and scaling of models becomes impossible.
Bottom Crack Width. Considering all of the data, with f, as the stress
variable, the best general variable appears to be *\/t,A Rf.. Other

D _
good variables are \/A, \/A, \/? and \/ti\/A. All these variables

t
are independent of the bar diameter D, and all consider the area of
concrete around a bar in some manner.

The variable 3\/t,A reflects the variation in the bottom concrete
cover as well as the average effective area of concrete around a re-

inforcing bar. Realizing that the magnitude of the crack widths for
the Riisch-Rehm data and the Kaar-Mattock data are out of line with
the other investigations, and that Clark’s test program was more ex-
tensive than the other American studies, the following equation is
recommended:

w, = 0.076 3\/t,A R f, (19)

This equation represents the most probable maximum crack width
on the bottom face of a beam, with f. as the variable.
Examining possible improvements in the equation using a stress

term of the form f, — K with the modifying variable 3\/t,A, it was
found that f, — 5 produced the lowest standard errors. The improvement
in the absolute error by using f, — 5 instead of f, is reflected by the
reduction in o as seen by comparing lines 7 and 24 in Table 6-3.
Correspondingly, 7 percent more of the data falls within 25 percent
of the most probable values (Table 6-6). The improved equation
for the most probable maximum bottom crack width is

wy, = 091 */BA(f, — 5)R (20)

As mentioned before, the scatter in the data is appreciable even
for the best probable maximum crack width equations, such as Egs.
19 and 20. To give some information about the distribution of the
measured maximum bottom crack widths for each individual investiga-
tion, Table 6-6-A is presented. For example, using the optimum C
values for each investigation, only about 15 percent of the data exceed
1.25w;,. Using the recommended equations with C values 0.076 and
0.091 obtained by considering all investigations, Table 6-6-B gives
similar information on crack width distribution. The standard errors
in Table 6-6-B are, of course, larger than some in Tables 6-3, 6-4 and 6-5,
since they relate to the indicated overall C values rather than to those
derived for each individual investigation.

Side Crack Width. Each of the variables \/t,, *\/A, AV} pB are very
't

good for just one of the investigations—apparently by taking account
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TABLE 6-6-A PERCENTAGE DISTRIBUTION OF MAXIMUM BOTTOM
CRACK WIDTH DATA

Equation—w, = C'VtA R,

Investigation ~ Hognestad ~ Riisch-Rehm Kaar-Mattock®  Clark  Kaar-Hognestad®

No. Beams 8 23 13 54 8

C 0714 .0880 1047 0767 0711

1.5wn 12% 6 5 3 12

4/3w,, 12 10 9 10 24

1.25w,, 16 15 17 15 33

W, 38 37 60 42 61

75w, 75 77 95 84 78

Swy, 97 95 100 98 98

# .. used in place of f..

Equation—w, = C*VtA R(fs - 5)

Investigation ~Hognestad Riisch-Rehm Kaar-Mattock?  Clark  Kaar-Hognestad?

No. Beams 8 23 54
C .0824 .0993 .0911
1.5w), 12 6 4
4/3wy 12 14 12
1.25w, 12 18 17
Wi 41 44 54
75wy, 78 87 92
Swn 97 98 98

t Equation not applicable using f«m (see note in Table 6-111).
f The number 12 indicates that 12% of the crack width observations were larger than

1.5wu.

of the characteristics of the particular beams tested (see Table 6-4).
The only measure that really worked in improving the correlation with
all of the side crack data was to consider the effect of the location
of the neutral axis in reducing the crack width, especially in shallow
beams with large side cover. This reduction can be most simply ex-

pressed by the factor ———1— The variables \/ta/A and 3tA

te
l+kg’h—]

were found to work best in conjunction with this reduction factor.
VA WA

, 2 ’
L+ t/h’ % t/hy

. T

T%%}T is the best variable (see Table 6-5). The first of these
8 1

variables was slightly better than the other two, but the difference

or

It is difficult to determine whether
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was not significant. Hence, the following equation is recommended
because it resembles Equation 19 for bottom cracks:

3t A
w. = 0076 —VEA g (21)
1+ % t/hy

This is the proposed equation for the probable maximum side crack
width with f, as the variable.

Considering equations with an f; — K stress term, the recommended
equation is

3\’/»&—A
1 + t/hy

The average K values for the Hognestad and Riisch-Rehm beams
were 8.3 and 4.1, respectively, as mentioned before. Examination of
Table 6-7 shows that the improvement of Eq. 22 over Eq. 21 is
negligible. The value of K = 5 was selected because it is also used
in the recommended side crack equation. Tables 6-7-A and 6-7-B show
the measured maximum bottom crack widths in the same manner as
Tables 6-6-A and 6-6-B do for the maximum bottom crack width.

w, = 0.091 (f. — 5) (22)

TABLE 6-6-B PERCENTAGE DISTRIBUTION OF MAXIMUM BOTTOM
CRACK WIDTH DATA USING RECOMMENDED EQUATIONS

Equation—w, = 0.076/t,A Rf,

Investigation  Hognestad Riisch-Rehm Kaar-Mattock®  Clark  Kaar-Hognestad*

- 3.27 3.41 4.97 1.65 2.37
15w, 12 12 38 4 4
4/3ws 12 20 74 10 17
1.25ws 12 28 82 16 24
Wi 31 58 98 45 46
75w, 66 85 100 85 74
50w, 97 98 100 98 96

* fsm used in place of fs.

Equation—wi, = 0.091°Vt,A R(fs — 5)

Investigation Hognestad Riisch-Rehm Kaar-Mattock®  Clark  Kaar-Hognestad®

P 3.20 3.17 4.50 1.59 2.60
15w, 9 12 31 4 11
4/3w, 12 20 58 12 26
1.25w,, 12 26 71 17 33
wi 25 58 89 52 50
75w, 69 90 91 90 76

S0w, 97 98 91 98 100
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TABLE 6-7-A PERCENTAGE DISTRIBUTION OF MAXIMUM
SIDE CRACK DATA

" o :;\"/ts—A
Equation—w, = C T35 o b
Investigation Hognestad-Broms Riisch-Rehm Kaar-Mattock®

No. Beams 34 21 13

C 0743 .0880 1165
1.5w, 6% 4 0
4/3ws 14 7 3
1.25w, 28 14 3
W 54 41 42
75w 88 79 89
Sw 98 100 98

* fyu used instead of f,.

3./t A
Equation—w, = C —Y t:A (f. - 5)

1+ t/h
Investigation Hognestad-Broms Riisch-Rehm Kaar-Mattockt

No. Beams 34 21

c 0906 1020
1.5w, 8 7
4/3w 19 12
1.25w, 31 16
Wi 60 53
75w 89 87
Bw 98 100

¥ Equation not applicable using fuu (see note in Table 6-I11).
¥ The number 6 means that 6% of the observations are greater than 1.5 w, where w,
is as given above the table.

Comparison of Side and Bottom Crack Equations. All these equations
contain the concrete cover t, or t,, the effective concrete area A,, and
the number of bars m, as well as the steel stress. In general, the effect
of the factors R and the denominator in the side crack equations is
to produce smaller side crack widths than bottom crack widths.

It is interesting to note that both Equations 20 and 22 reduce to

Wuax = 0.133 ts(fs — 5)

for a cylindrical tensile specimen for which A = #t2 and te = t. In
a similar manner, Eq. 19 and 21 reduce to

Woay — 0.1113 tf,

These equations are similar to Broms™ expression (Eq. 3) that was
derived from tensile tests for high stresses.
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TABLE 6-7-B PERCENTAGE DISTRIBUTION OF MAXIMUM SIDE CRACK
DATA USING RECOMMENDED EQUATIONS
0.076"VtA

Equation—w, = ——-— M %" f|
4 L+ 3%t/

Investigation Hognestad-Broms Riisch-Rehm Kaar-Mattock®
7 1.82 2.54 4.15
1.5w, 6 11 50
4/3ws 12 19 67
1.25w, 25 28 80
Wi 54 66 97
15w, 88 91 98
50w, 98 100 98

* f.m used instead of f..

VEA g s

Equation—w, = 0.091 T b
Investigation Hognestad-Broms Riisch-Rehm Kaar-Mattock®

o 1.79 2.44 4.29
1.5w, 8 12 59
4/3w 17 20 71
1.25w 32 28 80
W 539 73 89

75w 89 93 89
50w 98 100 89

SUMMARY AND CONCLUSIONS

The maximum side and bottom flexural crack data taken from 6
_investigations were analyzed statistically with the aid of a computer.
Many variables and equations, both old and new, were examined.
The following major conclusions were reached regarding the factors
affecting the crack width:
1. The steel stress is the most important variable.
2. The cover thickness is an important variable but is not the only
consideration.
3. The bar diameter is not a major variable.
4. The size of the side crack width is reduced by the proximity of
the compression zone in flexural members.
5. The bottom crack width increases with the strain gradient.
6. The major variables are the effective area of concrete A, the
number of bars m, the side or bottom cover, and the steel stress.
In agreement with points 2, 4 and 5 above, different equations were
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necessary to determine the side and bottom crack widths. The equations
recommended as best (and yet practical) are:
1. For the most probable maximum crack width at the level of the
reinforcement:
N
;= 091 —F=.— (f, — 5
Wy 09 T+ t/h; (£, )
2. For the most probable maximum bottom crack width on the
bottom (or tension) face of the beam:

wy, = .091 3\/t,A R(f, — 5)

Two other equations, slightly simpler but not quite as good as the
above were also suggested:
3. For the side crack width

ws = 0.076

4. For the bottom crack width

w, = 0.076 3\/t,A Rf,

All proposed equations are dimensionally correct.

Since the recommended equations predict the probable maximum
crack width, using appropriately larger numerical coefficients in design
practice would reduce the probability of underestimating the maximum
crack width. Such modifications for design purposes can easily be done
with the help of Tables 6-6 and 6-7.

ACKNOWLEDGMENTS

An extensive investigation of the mechanism of tension cracking was
sponsored at Cornell University jointly by the Reinforced Concrete
Research Council and the U.S. Bureau of Public Roads. Results of this
investigation have been published in full in the Dec. 1964, Jan., Sept.,
Oct. and Nov. 1965 issues of the ACI JOURNAL.

The present investigation, while not a part of this sponsored research,
is a direct outgrowth of it, and full use has been made of the data and
concepts developed under that project. The idea of an extensive sta-
tistical evaluation of all available experimental data on flexural cracking
was first suggested by Prof. Hubert Riisch while he was De Frees
Distinguished Visiting Professor at Cornell University during the spring
semester 1965. The comments and encouragement of Dr. George Winter,
Chairman, Department of Structural Engineering at Cornell University is
gratefully acknowledged.



116

Notation
A = A./m

Ac=2b'(h—d)=

Ag
At

S1
te

= 15.95/f.
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APPENDIX

average effective concrete area around a reinforcing
bar, in®

effective area of concrete, in®

area of tension reinforcement, in®

area of concrete in tension, in* = b’h, for rectangular
section

ratio of bar deformation height to nominal bar diameter
width of beam at compression side of beam, in

width of beam at centroid of tensile reinforcement, in

= ratio of bar deformation spacing to nominal bar di-

I

i

I

Il

ameter

numerical constant in crack width equation (see Eq. 13)
nominal bar diameter, in

effective depth of beam, in

compressive cylinder of concrete, ksi

steel stress calculated by elastic cracked section theory,
ksi

measured steel stress, ksi

overall depth of beam, in

(1 — k)d h, = h — kd

= distance from neutral axis to compression face divided

I

Il

by effective depth of beam

number of tensile reinforcing bars

ratio of modulus of elasticity of steel to that of concrete
number of observations

As/bd

A A,

AJ/A¢

he/hy

standard error (see Eq. 14)

spacing of bars in outer row of reinforcement

s = 0 when only one bar is used

swhenm > 1;s; = b’ whenm =1

thickness of T — beam flange, in

the effective cover thickness as defined by Broms?
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tom =\t + (s/4)?

t, = side cover measured from the center of outer bar, in

t, = bottom cover measured from the center of lowest bar, in

tee = effective side cover as defined in Eq. 18 and Figure 6-3

Wi = maximum (measured or calculated) side crack width
at the level of steel centroid in constant moment region,
.001 in

Wi, = maximum (measured or calculated) bottom crack

width in constant moment region, .001 in

W, = observed maximum crack width
W, = calculated maximum crack width
X = composite independent variable
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