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Due to a relatively large amount of experimental evidence and
recent scientific advances, it is now generally recognized that, to
ensure adequate safety margins, the size effect for designing
reinforced concrete beams against shear failure must be incorporated
into ACI code provisions. A purely empirical approach is impossible
because the available test data, mostly obtained on small beams,
need to be extrapolated to much larger beams for which tests are
scant or nonexistent. Arguments for an improved code formulation
are summarized, and verification by a database compiled by Joint
ACI-ASCE Committee 445 is reviewed.
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INTRODUCTION
ACI 318-05, Eq. (11-3), currently specifies the contribution

of concrete to the cross section shear strength of reinforced
concrete members as Vc = 2 bwd (valid in psi, lb, and
in.), where fc′  is the required compression strength of
concrete, d is the beam depth from the top face to the
longitudinal reinforcement centroid, and bw is the web
width. This code formula was justified on the basis of a Joint
ACI-ASCE Committee database,1 which involved only
small beams of average depth 13.4 in. (340 mm). This
formula was set not at the mean of these data but near their
lower margin, at a level that appears to be the 5% fractile (or
probability cutoff) of the data if a Gaussian distribution is
fitted to the data (refer to Fig. 1).

The code formula gives a size-independent average
concrete shear strength, vc = Vc /bwd (identical to the nominal
strength in mechanics terminology). Compelling experi-
mental evidence for size effect, however, has been gradually
accumulated since 1962,2-4 and some large-scale tests,
particularly those in Tokyo5-7 and in Toronto8-11 showed the
urgency of taking into account the size effect. Furthermore,
recent analysis of some major structural disasters (for
example, the Sleipner oil platform; a warehouse at Wilkins
AF Base in Shelby, Ohio; and the Koror box girder bridge
in Palau) indicated that the size effect must have been a
contributing factor (and so it seems to have been for the over-
pass failure in Laval, Quebec, on September 29, 2006). A
base of 296 data assembled at Northwestern University2 and
a recent larger database of 398 data compiled by ACI
Subcommittee 445F (refer to Fig. 2 and 3), clearly show the
current code to be unconservative for large beams. Especially,
a large (6.2 ft [1.89 m] deep) and lightly reinforced concrete
beam has been observed to fail at a load less than 1/2 of the
required design strength Vu/φ (with φ from ACI 318-05).

The purpose of this paper is to summarize the justification
of a revision12 of Section 11.3 of ACI 318-05 (detailed
arguments are presented separately13,14).

fc′

RESEARCH SIGNIFICANCE
To make the risk of structural failure much smaller than

various inevitable risks that people face, the tolerable failure
probability is approximately one in 1 million.15 This value
agrees with experience for small beams, but not for large
ones, for which it has been approximately one in 100016,17 (and
could become one in 100 or higher as ever larger beams are
built). Whether or not such intolerable risk will have to be
tolerated depends largely on taking the size effect properly into
account. This is an issue of paramount significance.
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Fig. 1—Joint ACI-ASCE Committee 3261 small beam database
used to justify current ACI code formula for shear force
capacity Vc due to concrete in reinforced concrete beams
with and without stirrups, and reductions specified or implied
by ACI 318-05 that were justified by this database (fcr′  =
average compression strength of concrete from tests; fc′  ≈
0.7fcr′ = required concrete strength, as defined in ACI 318-05).

Fig. 2—Alternative simplified size effect formula compared
with: (a) complete ESDB; and (b) small-size portion of that
database in expanded scale.
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EXPERIMENTAL DATABASE USED
Thousands of experiments have been conducted around

the world to assess the shear capacity of concrete members,
although only a small fraction of them were specifically
aimed at the effect of size. ACI Subcommittee 445F
extracted, from a collection of more than 1000 data, a new
database of 398 data, called the Evaluation Shear Database
(ESDB).18 Only beams with no shear reinforcement,
subjected to three-point or four-point loading, are included.
All the beams have a rectangular cross section except that 24
are T-beams. The beam depth ranged from 4.33 to 78.74 in.
(110 to 2000 mm) (with a mean of 13.6 in. [345 mm], which
is nearly equal to the mean of 13.4 in. (340 mm) in the 1962
database, and a coefficient of variation [CoV] of 74%); the
shear-span ratio (a/d) (with a = M/V) ranged from 2.41 to
8.03 (with a mean of 3.6 and a CoV of 26%); the compression
strength fc′  of concrete of the beams ranged from 1828 to
16,080 psi (12.6 to 110.9 MPa) (with a mean of 6104 psi
[42.09 MPa] and a CoV of 55%); the longitudinal steel ratio
ranged from 0.14 to 6.64% (with a mean of 2.3% and a CoV
of 52%); and the maximum aggregate size, known for only
for 341 data points, ranged from 0.25 to 1.5 in. (6.35 to 38 mm)
(with a mean of 0.71 in. [18 mm] and a CoV of 40%).

The ESDB has been adopted for the present studies in ACI
Committee 446, even though the rationality and impartiality
of the criteria used to select the data have been questioned.19-23

For instance, the largest beams ever tested, up to 9.84 ft
(3 m) deep5-7 were excluded from the ESDB based on the
fact that they were subjected to distributed load, a combination

of which, with point loads in the same database, was thought
to complicate interpretation. But this position disregards the
fact that the code provision must apply to both. The
reduced-scale beam tests at Northwestern University,4 with
an aggregate size of 0.19 in. (4.8 mm) and a beam width bw
of 1.90 in. (48 mm), were excluded with the explanation that,
inexplicably, only beams with bw greater than 1.97 in. (50 mm)
were admissible; these tests, however, exhibited the most
systematic size effect trend, had an exceptionally broad size
range (1:16), and achieved the highest brittleness number24

among all the available tests, thus mimicking the brittleness
of very large beams (bw equaled 10 maximum aggregate
sizes in these tests, which is not only adequate but also, after
a width increase by mere 4%, would have technically qualified
these data for inclusion in the ESDB; the width increase would
not have distorted interpretation because it is generally
accepted that the effect of beam width on vc is nil8,20-23 if the
width exceeds approximately four aggregate sizes).

While the size effect is of major concern for beams deeper
than approximately 40 in. (1 m), 86% of the tests in the
ESDB pertain to beam depths less than 20 in. (0.5 m), 99%
less than 43 in. (1.1 m), and 100% less than 79 in. (2 m) (see
the database histogram in Fig. 1 of Reference 13). The CoV
or ω of the deviations of an empirical size effect formula
derived directly from the ESDB will therefore be totally
dominated by small size beams for which the size effect is
unimportant. Thus, it is possible that some formula that gives
the lowest ω for the ESDB could be completely wrong for
large sizes while another formula that might give a higher ω
could be much more realistic for large sizes. Obviously, a
purely empirical extrapolation to large sizes cannot be
trusted. A solid scientific basis is crucial. In the plot of
log(vc / ) versus logd (refer to Fig. 2 in Reference 13) it
is striking that, while the curves of various previously
proposed formulas are very different, they all appear to be
equally good (or equally bad) compared with the ESDB. The
reasons are: 1) The size range covered by the database is not
broad enough; 2) the scatter is enormous because the effects
of concrete strength and type, longitudinal steel ratio, shear
span, and aggregate size are not separated by a suitable
choice of relevant regression variables; and 3) the ESDB
database is biased by the fact that the interval averages of
other influencing variables (ρw, a/d, fc′ ), as well as the spread
between the minimum and maximum interval values of each
variable, vary strongly from one size interval to the next.

A serious obstacle to extracting a size effect formula
purely empirically from the ESBD is the fact that the vast
majority (more than 97%) of its 398 data points come from
tests motivated by different objectives (such as the effect of
concrete type, reinforcement, and shear span), in which the
beam depth was varied only slightly or not at all. The effects
of variables other than d exhibit enormous scatter, which
masks the size effect trend. It is necessary to find regression
coordinates that include the effects of influencing variables
other than the size.

CHOICE OF BASIC SIZE EFFECT FORMULA
In view of the preceding arguments, it is necessary to establish

the beam shear formula in two steps: 1) select the form of the
formula on the basis of a sound theory and verify it by close fits
of the available individual test series with geometrical scaling
and a sufficiently broad size range; and 2) calibrate the
selected formula using the whole ESBD. This procedure12-14

led to the classical energetic size effect formula25
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Fig. 3—(a) Comparison of proposed formula with ESDB;
and (b) smoothing of histogram of beam depth in ESDB.
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(1)

The first step shows that the choice of the form of size
effect would not be contaminated by random variation of
parameters other than size d. Because of high random scatter
in beam shear tests, the size range should be at least 1:8 to
obtain a clear size effect trend. Two data sets that closely
approach these requirements are those obtained at North-
western University (not included in the ESDB) and the
University of Toronto (refer to Fig. 4), which shows that the
fits by Eq. (1) are very close.

The salient property of this formula is that, for large sizes,
it approaches an inclined asymptote of slope –1/2 in a doubly
logarithmic plot, corresponding to a power law of the
type d–1/2. This property, which was endorsed as essential
by a unanimous vote of ACI Committee 446 in Vancouver in
2003, is indeed verified by the available broad-range test
series—Northwestern University tests (Fig. 4(a)), University
of Toronto tests (Fig. 4(b)), and the record-size Japanese
tests (Fig. 4(c) and (d)). It is not contradicted by any of the
existing additional seven test series of a lesser but still significant
size range8,26,27 (refer to the plots in Reference 14).

The Japan Society of Civil Engineers (JSCE) pioneered
the size effect for design code long ago. It adopted a
power-law, vc ∝ d–1/4, which was proposed by Okamura and
Higai28 already in 1980 before the energetic size effect was
discovered and was motivated by the Weibull statistical
theory, at a time when this classical theory was the only
theory of size effect. A decade later it became clear that the
Weibull theory applies only for structures failing right at the
initiation of fracture growth from a smooth surface,29,30

which is not the case for reinforced concrete beams, where a
large crack or cracking zone develops before the maximum
load is reached.24,29-32 Besides, even if the Weibull
statistical theory were the right explanation for the JSCE
power law, its exponent would need to be changed from –1/4 to
–1/12. The reason is twofold: 1) a realistic Weibull modulus
for concrete is 24 rather than 1214,33; and 2) the fracture
scaling must be considered two-dimensional (n = 2) because,
in not too wide beams, the fracture must (for reasons of
mechanics) grow over the whole beam width nearly
simultaneously. But the exponent –1/12 would be far too
small to describe the strong size effect evidenced by test
data, including those of JSCE.

The formula based on the crack spacing according to the
modified compression field theory (MCFT) has the opposite
problem of the JSCE formula. Its large-size asymptote is
vc ∝ d–1, while the exponent of the greatest thermodynamically
possible magnitude is –1/2 (or else the energy flux into
moving fracture front would be infinite24,29,31). Besides, the
proposed justification of the MCFT formula34 is unrealistic
for two reasons13,14: 1) crack spacing is not uniquely related
to energy release and depends also on other factors35; and 2)
the crack-bridging tensile and shear stresses at maximum
load are reduced to almost zero while the failure is caused
mainly by near-tip compression stresses parallel to the diagonal
shear crack. As for the CEB-FIP formula, it is purely
empirical and thus cannot be trusted for large sizes for which
data are scant or nonexistent.

The deceptiveness of a purely empirical power-law
extrapolation of a combined database such as ESBD is
illustrated in Fig. 5(a), (b), and (c). Suppose that the mean

vc
v0

1 d d0⁄+
-------------------------=

size effect trend agrees perfectly with size effect Law (1), but
different investigators choose different size effect ranges for
testing. In view of scatter, each of them fits a power law to
his data. The exponents of this power law will vary between
0 and –1/2 depending on the chosen size range. An unambiguous,
purely experimental verification of Eq. (1) would require a
very broad size range (Fig. 5(d)).

STATISTICAL CALIBRATION, VERIFICATION,
AND EVALUATION OF PROPOSED FORMULA

The next step is to calibrate the size effect formula by
proper statistical regression. Let vi (i = 1, 2,...n) be the

Fig. 4—Comparison of size effect Formula (1) to beam
shear test series with greatest size range and with nearly
geometrical scaling: (a) microconcrete beams tested by
Bažant and Kazemi at Northwestern University in 19914

(not included in ESDB); (b) large size tests at University of
Toronto reported by Podgorniak-Stanik9 and Lubell et al.;11

and (c) and (d) large beams under uniform loading in Tokyo.5-7

Fig. 5—Example of effect that choice of size range of highly
scattered tests can have on regression result when straight
line plot in log-scale in assumed.
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measured data points for sizes di  and let vi be the corre-
sponding values of vc calculated from the proposed formula.
It turns out that the right approach is not to minimize the sum
of squared errors (or residuals) Σi(vi – vi)

2 because the variance
of the data (precisely, conditional variance Var(vc|d)36) is
heteroscedastic, that is, strongly decreases with the increasing
size d. To minimize statistical bias, the statistical variable vc
should be transformed so as to make the variance, and thus
the scatter band width, approximately uniform,36 or
homoscedastic. This is approximately achieved by the
transformation y = lnvc. Thus, the objective of data regression
is to minimize, in the scale of lnvc , the square of the standard
error of regression sL, the unbiased definition of which is

 where p is the number of free
parameters in data fitting (because (dlnvc)

2 = (dvc)
2/vc

2 ), the
transformation from vc to y has a similar effect as applying
weights proportional to 1/vc

2 . In the linear scale of vc, the
corresponding CoV of regression is ω = ( )/2 (which
herein is almost equal to sL).

According to the ACI code, the factored shear force Vu
must not be greater than φ(Vc + Vs) where φ = 0.75 is the
understrength (strength reduction) factor and Vs is the yield
shear force carried by shear reinforcement. The maximum
shear force Vc that can be carried by concrete is proposed to
be calculated as14

, d0 = κ fc′
–2/3 (2)

where, if da is known, κ = 3800 ; if not, κ = 3330 (3)

where Vc is in lb, fc′  is in psi, ρw is the longitudinal steel ratio,
and bw and d are in inches. The expression for d0 is empirical.
Note that Vc increases continuously with d, but less than
proportionately (because of size effect).

As seen in Fig. 2(b), for very small d, the Vc value
according to the proposed Formula (2) is greater than
predicted by the current Formula (4), Vc = 2 bwd. This
means that the current formula can be used safely within a
certain range. The permissible safe range for Eq. (4) is d ≤ 6 in.
(150 mm). This is ascertained from the ESDB plotted in
Fig. 2, which reveals that for d ≤ 6 in. (150 mm), no beam
test gave a shear strength less than the value given by Eq. (4).

As a simple and safe (though often uneconomical) alternative
(Fig. 2(a)), the simple formulas

for d ≤ 6 in. (150 mm): Vc = 2bw d (4)

for d > 6 in. (150 mm): Vc = 5bw (5)

can be used instead of Eq. (2). In Fig. 2, the solid inclined line
represents Eq. (5). Note that if the small size limit were set at
9 or 12 in. (0.23 or 0.3 m), as shown by the other two dashed
inclined lines, the design equation would not be safe.

Formula (2), as well as Formulas (4) and (5), are recom-
mended for use regardless of whether or not there is shear
reinforcement. For small beams, shear reinforcement appears
to increase Vc appreciably. But this observation is based on
only one large beam test, which is statistically insufficient,
and the test shows that the size effect is only mitigated, but

sL
2 Σi 1=

n vi vi⁄( )2 n p–( )⁄ln=

e
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3 8⁄ 1 d
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fc′

fc′

fc′ d

not eliminated, by shear reinforcement. Furthermore, finite
element simulations at Northwestern University (based on
nonlocal damage concept) show that, for large beams
exceeding approximately 60 in. (1.52 m) in depth, shear
reinforcement does not increase Vc and does not help against
size effect. For very deep beams with strong shear rein-
forcement, these simulations indicate that not only is Vc not
increased, but Vs at maximum load is much below the yield
strength of stirrups Vs = Asfyd/s.

The general form of Formula (1) has been verified for
many different structural geometries and many different
quasibrittle materials. The analytical derivations (though not
the numerical verifications) have been subjected to the
hypothesis that a large crack or long band of cracking
damage develops in a stable manner before the maximum
load is reached and the failure modes of small and large
structures are geometrically similar (experiments as well as
finite element simulations document that this is approximately
true for beam shear failures).

The current ACI code also involves corrections to the
expression for Vc due to simultaneous action of compressive
or tensile axial force, and for the calculation of the shear span
ratio from the bending moment in the presence of axial force.
The multiplicative factors for these corrections are applied to
the present formula with no change.

The expressions for the parameters in Eq. (2) through (5)
have been obtained by simplified mechanical considerations
and calibrated by optimization of data fits.14 The
least-square fitting of the data, conducted in the plot of lnvc
versus lnd, was a weighted regression. The weighting was
necessary to counteract the subjective bias due to crowding
of the data points in the small-size range; refer to Fig. 3
where the data points are represented by circles having areas
proportional to the weight. A logarithmic scale of d needs to
be used because, for example, the size effect from 11.8 in.
(0.3 m) to 11.8 + 11.8 in. (0.3 + 0.3 m) is significant, but
from 118 in. (3 m) to 118 in. + 11.8 in. (3 m + 0.3 m) insignifi-
cant. The optimum data fitting was accomplished by a standard
library subroutine for the Levenberg-Marquardt nonlinear
optimization algorithm. The heavy solid line in Fig. 3
represents the mean fit formula, and the dashed line represents
the design formula, which is set at the lower 5% fractile of
the scatter band width. The overall CoV or ω of the errors of
Formula (2) calculated by the ESDB is 15%. The CoV of the
errors for various size intervals of 10 in. (0.25 m) width are 18.8,
15.6, 11.6, 15.3, 14.5, and 15.7%, respectively (note that these
values are approximately uniform, which conforms
homoscedasticity, is required for a proper statistical
approach and is achieved by transforming the regression vari-
able from vc to lnvc).

The reason why Eq. (3) gives two options for calculating
d0 is that sometimes the design needs to be made before the
maximum aggregate size da has been decided. Both expressions
for d0 give the same value when da = 0.77 in. (≈20 mm).

REGRESSION OF DATA GROUPED
IN EQUAL-RATIO INTERVALS

To minimize the size effect bias due to highly nonuniform
distribution of data through the size range of interest, subdivide
the range of beam depths d of the existing test data into five
size intervals (Fig. 6). They range from 3 to 6 in. (76.2 to
152.4 mm), from 6 to 12 in. (152.4 to 304.8 mm), from 12 to
24 in. (304.8 to 609.6 mm), from 24 to 48 in. (609.6 to
1219.2 mm), and from 48 to 96 in. (1219.2 to 2438.4 mm).
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Note that the borders between the size intervals are chosen to
form a geometric (rather than arithmetic) progression
because what matters for size effect is the ratio of sizes, not
their difference (note that, for example, from d = 4 to 24 in.
[100 to 600 mm], the size effect is strong and from 400 to
420 in. [10,160 to 10,668 mm], the size effect is negligible).

To filter out the effect of influencing parameters other than
d, each interval of d must include only the data within a
certain restricted range of ρw values such that the average ρw
will be almost the same for each interval of d. Similarly, the
range of a/d and da must be restricted so that the average a/d and
da be approximately the same for each interval of d. Because,
as generally agreed, the effect of the required concrete strength
fc′  is adequately captured by assuming the shear strength of
cross section vc to be proportional to , the range of fc′  does
not need to be restricted and the ordinate y of data centroid in
each interval may be obtained by averaging, within that
interval, not the vc values but the values of y = vc/  that fall
into the aforementioned restricted ranges of ρw, a/d, and da.

As shown in Fig. 6, there are only three test data in the size
interval 48 to 96 in. (1219 to 2438 mm), one of which has the
longitudinal steel ratio of ρw = 0.14%, the second is 0.28%,
and the third is 0.74%. This extremely low ρw makes it
impossible to find similar data in other intervals of d. For
example, the minimum ρw is 0.91% within the first interval
of d, and 0.46% within the third interval. Therefore, one may
consider the size range from 3 in. (76 mm) to only 48 in.
(1219 mm). After searching the ESDB, there are 7, 19, 25,
and 36 data points within the admissible ranges for each
interval of d (ideally, the number of data in each interval
should be the same, and thus it is impossible to eliminate bias
completely). For these restricted ranges, the mean values of
ρw are 1.51%, 1.5%, 1.51%, and 1.5%; the mean values of a/d
are 3.44, 3.25, 3.25, and 3.21, respectively; and the mean
values of da are 0.66, 0.66, 0.68, and 0.65 in. (16.8, 16.8,
17.3, and 16.5 mm). Thus, data samples with minimum bias
in terms of ρw , a/d, and da are achieved (a systematic
computerized procedure toward this end is developed in
Reference 37). The data centroids for each interval are
plotted as the diamond points in the plot of log(vc / )
versus logd (Fig. 6(a))—on top they are shown together with
all the data points of the database, and at bottom they are
shown alone. Despite enormous scatter in the database
(Fig. 6(a)[top]), the trend of these centroids is quite systematic.

Assuming the statistical weight of each size interval
centroid in Fig. 6 to be the same, statistical regression is used
to obtain the optimum least-square fit of these four centroids
with the theoretically justified size effect law vc /  =
C(1 + d/d0)–1/2, where C and d0 equal the free constants to
be found by the fitting algorithm. The fit is seen to be good;
it has a very small CoV of errors (ω = 2.7%), and the asymp-
totic slope –1/2 required by fracture mechanics2,13,14,25 is
seen to match the data trend well.

To increase the size range, consider now that one point
from the largest size interval from 48 to 96 in. (1219 to
2438 mm), namely the Toronto beam with ρw = 0.74%, is
included; refer to Fig. 6 (admittedly, one data point is too
few, but that is what must be accepted because of the cost of
testing very large beams). Then the same procedure is
followed as previously mentioned and, for the other four
intervals of d, 1, 2, 4, and 15 data points are found for which
the means of ρw in the interval of d are 0.91, 0.94, 0.92, 0.91,
and 0.74%, while the mean of a/d = 2.9 and the mean
maximum aggregate size da = 0.39 in. (10 mm) are the same

fc′

fc′

fc′

fc′

for each interval. Again, the size effect trend is very clear,
and agrees well with the asymptotic slope of –1/2. The CoV
of errors is now ω = 4%.

The foregoing regression with minimized statistical bias
lends no support for the previously proposed power laws
vc /  = Cd–1/4 or Cd–1/3. Neither does it lend any support
to the asymptotic size effect vc /  = Cd–1 implied by an
alternative model based on MCFT (an exponent magnitude
greater than 0.50 is energetically as well as statistically
impossible.24,29,31

EXCESSIVE FAILURE PROBABILITY
CAUSED BY IGNORING SIZE EFFECT

Could the size limit of 6 in. (150 mm) in Eq. (4) be extended
to 39.4 in. (1 m), as suggested by some researchers? No. To
demonstrate it,38 the data in the size range of d from 4 to 12 in.
(101.6 to 304.8 mm), centered at 8 in. (203.2 mm), are
isolated from the database (Fig. 7(a)). Within this narrow
range, no size effect trend is discernible, and the data may be
treated as a statistical population. Its mean and CoV are
found to be y = vc /  = 3.2 and ω = 25% (this relatively
high value of ω is the consequence of variability of many
parameters in the database). The data in this range suffice to
fix the probability density distribution function (pdf) for this
range, which is assumed to be log-normal. The same pdf is
compared in Fig. 7(a) with the series of individual tests of
beams of various sizes made at the University of Toronto,
which have been invoked by some engineers to claim that the
size effect may be ignored for d up to 39.4 in. (1 m).

It should be noted that, for the type of concrete, steel ratio,
and shear span ratio used in the Toronto tests, their shear
strength value lies (in the logarithmic scale) at a certain
distance a below the mean of the pdf. Because the width of
the scatter band in Fig. 7(a) in logarithmic scale does not
vary appreciably with the beam size, the same pdf and the
same distance a between the pdf mean and the Toronto data
must be expected for every beam size d, including the sizes

fc′
fc′

fc′

Fig. 6—ACI-ESDB and statistical regression of centroids of
test data with intervals of equal width: (a) large-size interval
not included; and (b) all intervals included.
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of d = 39.4 and 74.4 in. (1 and 1.89 m) for which there is only
one data point. In other words, if the Toronto test for d =
39.4 in. (1 m) were repeated for many different types of
concrete, steel ratios, and shear span ratios, humidity and
temperature conditions, etc., one would obtain a pdf shifted
downwards, as shown in Fig. 7(a). According to the
log-normal pdf shown, the proportion of unsafe 39.4 in. (1 m)
deep beams would be approximately 40%, while for small
beams, it is only 1%. This is intolerable. A design code
known to have such a dangerous property is unacceptable.

More seriously, a design code ignoring the size effect for
beams of d < 39.4 in. (1 m) will cause the failure probability
Pf of 39.4 in. (1 m) deep beams to be approximately 1000 times
larger than that of small beams 8 in. (200 mm) deep. To
demonstrate it, consider the pdf of the extreme loads expected to
be applied on the structure, which is denoted as f(y). Based on the
load factor of 1.6 and the understrength factor of φ = 0.75, the
mean of the pdf of the extreme loads will be positioned as shown
in Fig. 7(b). Assuming the individual loads to have the
log-normal distribution, their pdf is as shown in Fig. 7(b). Based
on the CoV of extreme loads, herein assumed as ωL = 10%, the
failure probability may now be calculated from the well-known
reliability integral36,39,40

(6)

where R(y) is the cumulative probability density distribution
(cdf) of structural resistance. Upon evaluating this integral

for beams of 8 in. (200 mm) depth, Pf ≈ 10–6 (7)

for beams of 39.4 in. (1 m) depth, Pf ≈ 10–3 (8)

The failure probability of one in 1 million corresponds to what
the risk analysis experts generally consider as tolerable,15-17 but
one in 1000 is intolerable.

SIZE EFFECT ON CONCRETE CONTRIBUTION Vc 
TO SHEAR STRENGTH OF BEAMS WITH STIRRUPS

Some researchers have recently voiced the opinion that
shear failure of beams with minimum or heavier shear

Pf f y( )
0

∞

∫ R y( )dy=

reinforcement exhibits no size effect. This opinion seemed
to be reinforced by one recent test at the University of
Toronto.11 In this test, a beam 74.41 in. (1.89 m) deep, with
approximately minimum stirrups, supported a shear force V
exceeding the required nominal shear strength Vu/φ by 6%
that is calculated according to ACI 318-05 (this observation
was claimed to confirm safety, even though this test result is,
in fact, 11% less than required if one notes that the design
should be based on the required compression strength, that
is, on vc = 2 , rather than the average compression
strength, that is, on vc = 2 ).

A proper statistical analysis, however, reveals that this
conclusion is incorrect. The correct interpretation of the
Toronto test is that there is a size effect, and that the reduction of
Vc caused by size effect is, for the Toronto test, approximately
41%, which is quite significant, though still much less than
the 76.2% reduction observed in a companion beam without
stirrups.41 The reason is that, aside from the (overt)
understrength factor φ = 0.75, the shear design implies two
covert understrength factors:
• Material understrength factor φm ≈ , due to the fact41

that the design must be based not on fcr′  but on fc′ , which
represents, on the average, approximately 70% of fcr′ ; and

• Understrength factor φf due to the fact that the design
formula has been set to pass at the margin (or fringe) of
the experimental scatter band width rather than through
its middle.

The situation is illustrated in Fig. 1. It shows all the points
of the ACI (1962) database containing only small beams
(accurately plotted from the table in the original source) and
also shows the fit of the histogram of vc data by a Gaussian
distribution. This database still serves as the basis of the
current ACI 318-05 shear design provisions. The ACI 318-05
formula for required average shear strength is shown by the
horizontal line at vc = 2  = vc = 2 .

The recent Toronto tests of two companion beams 74.41 in.
(1.89 m) deep, one with and one without stirrups, are shown by
the diamond points. The percentage strength reductions
marked in Fig. 1 show that the creators of ACI Formula 2
considered it necessary, from the safety viewpoint, that their
formula be set at approximately  × 65%, that is, 54%, of
the mean of their test database (note the separation of the
horizontal line 2  and the line 3.1  for the mean
of database).

The Toronto test without stirrups represents 0.74/3.1 =
23.8% of the mean of the database, and so the strength reduction
due to size effect is, for this test, 23.8%. But what strikes the
eye immediately is that not only the point for the beam
without stirrups, but also the point for the beam with
minimum stirrups, lies far below the mean of the database,
precisely at 1.83/3.1 = 59% of the mean. This indicates that
the size effect reduced the strength of the Toronto beam with
minimum stirrups to 59% of the average strength of the
small-beam database—a reduction that is not negligible at all.

The benefit provided by the minimum stirrups in the
Toronto tests was that the size effect reduction of Vc was
mitigated from 23.8 to 59%. That is helpful, but insufficient
for safety by far.   Even with stirrups, the failure probability
is several orders of magnitude higher than one in 1 million.

The aforementioned two covert understrength factors
implied by the current ACI 318-05 code provisions are 65 and
83.7%, as shown in Fig. 1. If these factors were unnecessary,
then the design formula would be vc = 2 /(0.65 × )
= 3.68  instead of vc = 2 , but this would, of course, be

fc′
fcr′

0.7

fc′ 0.7fcr′ 1.67 fcr′≈

fc′

0.7

fc′ fcr′

fc′ 0.7
f c′ fc′

Fig. 7—(a) Probability distribution of shear strength of
beams from 3.94 and 11.81 in. (10 to 30 cm) deep, based on
ACI Committee 318-F database, compared with Toronto
data; and (b) failure probability for small beam and 3.28 ft
(1 m) deep beam.
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unsafe. Obviously, the same safety margin must be satisfied
by any subsequent tests, such as the Toronto test.

These observations make it clear that stirrups do not eliminate
the size effect. They only mitigate it. According to the
theory,42 the general size effect Formula (1) remains valid
and the effect of stirrups is to increase the transitional size d0.
Avoidance of size effect would require elimination of
post-peak softening on the load-deflection diagram, and this
could be achieved only if the concrete were subjected to
strong triaxial confinement (all the three negative principal
stresses would have to exceed several times the uniaxial
compression strength in magnitude43).

The crack band finite element model has been used at
Northwestern University to check whether the shear failure
of beams with minimum stirrups exhibits a size effect. The
beam geometry is the same as in the Toronto tests,10,11

except that the longitudinal steel ratio is slightly raised to
1%, to make sure that the beam would not fail by flexure.
Computations are run for geometrically similar beams of
depths 37.2 in. (0.945 m), 74.4 in. (1.89 m, the size tested in
Toronto), and 148.8 in. (3.78 m). The fracture energy of the
Toronto concrete is estimated from the empirical formula44

as Gf = 60 J/m2. The stirrups and longitudinal bars are
assumed not to slip.

The mesh and the cracking pattern at maximum load are
seen in Fig. 8(a), which shows the simulated dimensionless
load-deflection diagrams for all the sizes. The diagram for d
= 74.4 in. (1.89 m, the size tested in Toronto) shows the peak
load of 340 kips (1513 kN), which is close to the measured
value (despite a small increase of longitudinal steel ratio).
Figure 8(c) shows the dependence of the average beam shear
strength vn = V/bwd on beam depth d, and Fig. 8(d) shows the
same for the average shear strength vc = Vc/bwd contributed
by concrete (Vc = V – Vs, Vs = As fyd/s where As and s equal
the stirrup area and spacing). These plots document the
existence of a strong size effect. The asymptotic slope –1/2
of the size effect is also shown.

To explore the effect of longitudinal steel ratio ρw , the
crack band finite element calculations are also run for
increasing ρw values (and for fixed size d = 74.4 in. [1.89 m])
(refer to Fig. 8(b)). It transpires that an increase of ρw raises
the shear capacity V of these beams, but only up to a certain
critical value, ρw ≈ 0.9%. For a further increase in ρw (and up
to 75% of the balanced steel ratio ρb), the shear capacity
slightly decreases and then levels off.

The conclusion from these finite element simulations is
that the shear reinforcement, whether minimum or heavier
than minimum, is unable to suppress the size effect. It mitigates
the size effect significantly, but not enough by far to make
the size effect negligible.

CLOSING COMMENTS
At present, the concrete design experts are not yet in

complete agreement. As pointed out, several alternative
formulas for size effect, including those of JSCE, CEB-FIP,
and ACI Subcommittee 445F, are being debated. They do
not show major differences within the range of the existing
database but give very different extrapolations to very large
beams. The extrapolation according to Eq. (2) gives much
smaller Vc values than the other formulas for beam depths of
the order of 393.7 in. (10 m). Even if the present rational
arguments are set aside, the prudent choice is the formula
offering the safest extrapolation of the database to large sizes,
which is Formula (2). If calibrated to the same database, this

formula will always give, for sizes beyond the database
range, lower values of Vc than the JSCE, CEB-FIP, and
ACI Subcommittee 445F formulas.

In view of costs, real-size tests of extremely large beams
are hardly feasible, and even moderately large beams cannot
be tested in sufficient numbers (and for a sufficient range of
shear spans, steel ratios, and concrete types), so as to provide
statistically significant evidence for an empirical formulation.
Some information, however, can be extracted from past
structural disasters. Their recent studies show that the size
effect must have been a contributing factor in many of them.
The reason that this was not initially recognized is that the
true overall safety factor (the ratio of the mean of test results to
the unfactored design service load) is huge—approximately 3.5
to 7 for shear failures of the small laboratory-size beams,41

and, even after taking the size effect into account, still
approximately 1.7 to 3.5 for the largest.

Therefore, not one mistake, but typically two or more
mistakes, are usually needed to cause shear failure of a reinforced
concrete beam. Unfortunately, multiple mistakes can happen,
and doubtless will. When they do, designing for size effect can
make the difference between failure and survival.
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APPENDIX—DISCUSSION OF DESIGN SITUATIONS 
NOT COVERED BY EXISTING DATABASE

Beams with low longitudinal steel ratio ρw 
in Joint ACI-ASCE Committee 445 database

Low ρw was one point on which concern has been voiced. In
the ESDB, ρw ranges from 0.14 to 6.64%, with a mean value
at 2.3%, and among the 398 tests, only 58 had ρw < 1%.
Therefore the data for ρw < 1% are plotted separately in
Fig. A(a) (in this and further figures with varying ρw , the size
of each circle is proportional to ρw). As can be seen, the fit is
just as good as that for the total ESDB, and so there is no
problem in this regard.

To clarify the role of ρw further, 18 beams, with ρw ranging
from 0.25 to 8%, have been simulated by a crack-band finite
element code with the microplane model (refer to Fig. A(b)).
In the computations, all the beams failed by shear. Again, the
ACI Committee 446 formula is seen to give a good and safe
estimate of shear strength for all the computer-generated data.

Design example: Fixed-end beam under 
distributed load

The ESDB is restricted to simply supported beams under
three- or four-point loading. The proposed code revision,
however, will, in practice, be applied also to redundant
beams and distributed loading. Although the existing code
specifications have, for a long time, been extended the same



ACI Structural Journal/September-October 2007 609

way, it is proper to check some cases. One case of concern is
an example of wide beam (slab) design presented in 2004 at
the ACI Committee 446 meeting in Washington, D.C.,
which seemed to cast doubt on the present proposal. A
fixed-end beam with a span of 20 ft (6.1 m), under an 11 ft
(3.35 m) overburden of soil, was considered and it was found
that the beam depth of d = 14 in. (356 mm) with ρw = 1.14%
is required according to the current ACI code, and the depth
of d = 34 in. (864 mm) with ρw = 0.13% would apparently be
required by the present code proposal. Due to negative
bending moment at ends, this is a case for which no test data
exist. Therefore, extensive simulations have been under-
taken using a crack-band finite element code to clarify the
perplexing conclusion (note that regular commercial finite
element codes lacking a nonlocal or crack-band concept
cannot be used because they cannot capture the size effect,
as a matter of principle).

The simulations of this loading, which is not covered by
the current ESDB, include two classical Japanese tests of
two beams 23.62 and 118.11 in. (0.6 and 3.0 m) deep,7 and
further three beams, all of them 14 in. (0.36 m) deep, with
ρw = 1, 2, and 3%. The results are shown by circles in Fig. A(c),
where the two Japanese tests are displayed as diamonds. The
simulations agree well with the Japanese tests, and also with
the proposed formula. The agreement with the Japanese tests
verifies the correctness of the finite element simulation and
confirms that the size effect is reproduced. Figure A(d)
further documents that the crack patterns at maximum load
simulated for the Japanese beams are quite realistic.
Figure A(d) also shows the simulated stress distribution
along the longitudinal steel bar, in which it should be noted
that the longitudinal steel bar does not yield at failure. For the
distributed load, the shear span is defined as a = M/V, and it
needs to be noted that it exceeds 2.5 for all the beams considered
herein. This means that these beams fit within the range of
validity of the current and proposed ACI specifications.

The proposed calculation suggested that an incredibly
deep beam with incredibly low ρw might be required if the
present code formula is used. Test data for this situation are
lacking. Because of negative bending moment at beam ends,
the effect of longitudinal steel entering the compression zone
needs to be simulated. Two beams shown in Fig. B(a) and (b)
were considered, both with d = 14 in. (356 mm), l = 240 in.
(6.1 m), and a/d = M/Vd = 2.86. In the beam on the left, the
longitudinal bars at the bottom face run through the whole
span, and in the beam on the right, the longitudinal bars
terminate at distance 1.5d from the supports. All the simulated
beams fail by shear (that is, the longitudinal steel does not
yield) and exhibit a clear diagonal shear crack at peak load.
The beam on the left of the figure has a shear strength higher
by 9% than the beam on the right. This result confirms that
the shear strength prediction is conservative when there is
steel bar in the compression zone. This is not surprising
because all finite element simulations show that the shear
strength is controlled by compression failure of the concrete
above the tip of the diagonal shear crack caused by compression
force parallel to the crack.

Although the design strength for both simulations is close
to the present proposal (Fig. B(c)), this proposal gives, for
d = 14 in. (356 mm), a design strength slightly less than the
factored load. This is what motivated the proposal to Joint
ACI-ASCE Committee 445 to calculate how much the beam
depths need to be enlarged to satisfy the present code
proposal. The calculation indicated that d = 34 in. (864 mm)
was needed if the present proposal were used. It was over-
looked in this calculation, however, that the present code
proposal, as well as the current code, becomes invalid once d
exceeds 16 in. (406 mm). The reason is that the beam
becomes a deep beam, which is defined as a beam with a/d ≤
2 and requires a different design procedure, based on the
strut-and-tie model. Using this procedure, one finds that the
necessary depth in the proposed example is d = 20 in.
(508 mm), and not 34 in. (864 mm).

This conclusion cannot be checked by the ESDB because
of its limitation to beams with a/d ≥ 2.5. Therefore, for

Fig. A—Test and simulations compared with proposed
formula: (a) ESDB data with ρw < 1%; (b) simulations of
beams with different ρw; (c) Japanese tests of simply
supported beams under distributed loads and their simulations;
and (d) crack patterns for Japanese beams at maximum load.

Fig. B—Finite element simulations for Bentz’s slab: (a) 14 in.
(356 mm) deep slab with steel bar at bottom face across
whole span; (b) 14 in. (356 mm) deep slab with steel bar at
bottom face terminated 1.5d away from support; (c) simulations
of fixed-end wide beams of different thicknesses, of sizes
within and outside the range of proposed formula; and (d)
42 in. (1.07 m) deep slab showing deep beam behavior.
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further clarification, four other beams are simulated by a
computer program. All parameters are the same except that
d = 4, 16, 20, and 42 in. (100, 406, 508, and 1067 mm) at
constant beam span L = 20 ft (6.1 m). The ratio a/d decreases
with increasing d, and this is seen to increase the shear
strength rapidly. The crack propagation and stress distribution
along the steel bar in the beam of 42 in. (1067 mm) depth are
plotted in Fig. B(d). A typical short beam failure is clearly
seen, and the steel bar yields at peak load. Formula (2) gives
good predictions for d = 14, 16, and 20 in. (356, 406, and
508 mm) even though it is supposed to apply only for d ≤
16 in. (406 mm) (which corresponds to a/d ≥ 2.5). For unusually

small depths, however, d < 4 in. (100 mm, a/d > 10), the
simulated shear strength is much less than predicted, which
suggests that an upper bound, a/d ≈ 8, might be considered
for adoption, with a different formula for higher a/d. The
reason is that, in very slender beams, the region having, at
maximum load, very high compressive stress (close to fc′ ) is
found to be much more elongated than for normal a/d, and
this apparently promotes crushing of concrete. Such
inferences cannot be checked with the ESDB, however, in
which the maximum a/d is 8.03. To cover a large a/d, which
is not included in the ESDB, the parameter a/d will have to
be included in Eq. (2).
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DISCUSSION

This paper discusses a very important but frequently
misunderstood aspect of parking structure design. The paper
provides very interesting data on actual movements of post-
tensioned and precast parking structures. The discussers are
the principal investigators for an ongoing PCI-funded study
on volume change effects in precast buildings, which is
referred to by the author.

Under the discussion of thermal coefficient of expansion,
the author contends that PCI reduces the temperature strains
by a factor of 1.5 when computing thermal shortening.
Although the PCI Handbook5 is not as clear as it perhaps
should be, it does not recommend using the 1.5 factor for
reducing thermal shortening; rather, the factor is used to
estimate equivalent volume change strains for purposes of
calculating volume change forces. As indicated in Section
3.4.3.1 of the handbook, “…since the shortening takes place
gradually over a period of time, the effect of the shortening
on the shears and moment of the support is lessened because
of creep and micro cracking of the member and its support.”
In other words, the 1.5 factor is solely for the purpose of
calculating member forces based on equivalent shortening.
Appropriately, the design examples in the handbook do not
use the 1.5 factor for calculating temperature shortening.

The author correctly points out that the PCI Handbook5

recommends a 25% reduction in computed thermal strains
due to the thermal lag effect. The author argues that thermal
lag effects are very small and should be conservatively
ignored when the computing volume change movement.
Referring to the PCI study that the discussers are now
completing, the author notes that summer temperatures
outside parking structures are on the order of 10 °F (5.6 °C)
hotter than ambient temperatures inside the parking structure.
Because thermal shortening is even more critical than
thermal expansion, it should have also been noted that
ambient temperatures inside parking structures are some-
what warmer than the outdoor temperatures in winter
months, especially in the lower levels. As a result of these
temperature differences, the thermal response of parking
structures is less extreme than would be predicted based on
ambient temperatures. In other words, the thermal lag effect
is primarily due to the less extreme microclimate inside the
structure. The discussers agree with the author that the lag
associated with the time it takes for a structural element to
reach ambient temperature is indeed not very significant.
Nonetheless, some reduction in thermal strains calculated
based on extreme outdoor temperatures is appropriate. A
reduction of 25% approximates the combined microclimate
and thermal lag effects at the lowest level of parking structures,
where volume change forces are most significant. The
reduction at the upper levels is much less and, as suggested
by the author, may be conservatively neglected.

Referring to Fig. 9 of the paper, it is interesting to note the
extreme scatter of observed thermal movements in precast

parking structures. Based on the data, the author recommends a
movement factor of 0.6 for precast parking structures
(compared with 0.8 for post-tensioned parking structures);
that is, the author recommends calculating thermal shortening as
60% of the theoretical temperature strain times the length
contributing to movement. Given the extreme scatter of the
data, higher or lower movement factors are equally justified.
The author further recommends a coefficient of thermal
expansion of 7.5 microstrains per degree Fahrenheit, which
is somewhat higher than the value of 6 microstrains per
degree Fahrenheit used in the PCI Handbook5 and other
references. Interestingly, taken together, the author’s
recommendations result in a calculated thermal shortening
for precast concrete structures that is identical to that
computed using the current handbook, which includes PCI’s
25% reduction for thermal lag. The author’s approach is an
improvement in the sense that it acknowledges the effect of
incremental movements at precast connections in reducing
the movement demand at expansion joints. Both the PCI
Handbook5 and author’s method provide a reasonable estimate
of thermal movement for expansion joint design. As
confirmed by the author’s observations, actual movement
will vary greatly. The paper’s documentation of this variability
is a significant contribution toward a better understanding of
the nature of volume change movement. Managing volume
change forces, however, is a problem of even greater
complexity and variability. Designers must accommodate
both movements and forces without damaging the structure.
The report on the PCI research, due summer of 2008, will
highlight the importance of flexible connections and ductile
members in managing volume change forces and precluding
damage due to volume change movement.

AUTHOR’S CLOSURE
The author appreciates the discussers’ interest in the paper.

The paper provides an empirical underpinning for the design
of expansion joints and proposes an equation (Eq. (1) of the
paper) to estimate expansion joint thermal movements. The
discussion focuses on two design factors in Eq. (1), namely,
design temperature and the movement factor (or M-factor).
Since the publication of this paper, the author has carried out
further investigation on expansion joint design. Both factors
will become clearer after the author’s subsequent paper on
expansion joints is published. Regarding the value of design
temperature, the author recommends using the temperature
values recommended by the Federal Construction Commission
and reproduced by ACI 224.3R-95.12 Any further reduction
in design temperature values would result in an overstress of
expansion joint assemblies, as shown in Fig. 3.

The discussers point to the obvious scatter in the test data
to compute the M-factors. As stated in the paper, the data
includes all readings recorded using constructed parking
facilities in service, and not on laboratory samples tested in
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Thermal Movements in Parking Structures. Paper by Mohammad Iqbal

Discussion by Gary Klein and Richard Lindenberg
ACI member, Wiss, Janney, Elstner Associates, Inc., Northbrook, IL; Davis Bowan & Friedel, Salisbury, MD
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a control environment. The lateral-force-resisting systems
(LFRS) in the facilities had beam-column frames of various
story heights, member sizes, and concrete strengths. These
properties affected the LFRS stiffnesses and the restraint to
thermal movement to a varying degree. As defined in the
paper, the movement factor M is the ratio of actual movement
and the calculated unrestrained movement under volume
changes. The M-factor indicates a structure’s intrinsic capability
to move under volume changes, and as such it serves as an
index. The M-factor values range from 0 and 1. Under an
ideal condition in which a diaphragm is free to move under
volume changes, its M-factor will be unity. On the other
hand, a diaphragm that is fully restrained by a rigid LFRS
extending the full length of the diaphragm has an M-factor
of zero. The pretopped precast structures data (Fig. 9)
exhibited more scatter than post-tensioned structures’ data
(Fig. 8) due to the presence of precast joints in the precast
construction. The M-factors were computed to represent the
upper bound of the movements.

For post-tensioned and field-topped precast parking
structures, the M-factor serves a useful index in quantifying

and predicting volume change cracking in a structure. An
M-factor of 0.8 means that a structure moves 80% of the total
unrestrained movement with the remaining 20% movement
consumed in the structural restraint. The 80% movement
level also indicates the degree of restraint post-tensioned
structures may tolerate while performing reasonably well.
Therefore, the M-factor helps predict whether a facility
would perform well under volume change effects. If a
structure’s LFRS is designed with an M-factor of 0.8 and
higher, it would exhibit minimal volume change cracks. If the
LFRS is stiffer and has a lower M-factor, however—say 0.7—
the facility is likely to exhibit more volume change cracking. An
extremely stiff structure having an M-factor of zero or near-zero
would be the most prone to volume change cracking.

A correction to the paper is also cited by the author—on
p. 546, third line from the bottom of the right-hand column,
the number in the parenthesis is inadvertently noted as 4.8 m.
It should be corrected to read 2.4 m.
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Discussion by Himat Solanki
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The authors have presented an interesting concept on the
effective stiffness of core/structural walls. The discusser
would like to offer the following comments:

1. The authors have proposed Eq. (3) based on a limited
test series of walls having an hw/lw ratio equal to or greater
than 3.0. Also, walls in the references studied by the authors
were rectangular, except for References 9 and 12, which
cover walls having end boundary elements and T-shaped
walls. It was very difficult to determine the effective stiffness
of a wall with a T-shape due to the loading patterns. Also,
three walls in Reference 11 have a staggered opening, which
further complicates the analysis. There are few references18-21

that address the wall hw/lw ratio of 3.0 or higher.
2. In Reference 22, the following equation is suggested for

structural walls

(5)

It can be seen that authors’ Eq. (3) is inconsistent with Eq. (5).
3. If structural walls are considered as a wall-column

concept,23 the Ie can be considered as outlined in Reference 24
and can be presented as follows

Based on References 23 and 24, the authors’ Eq. (3) is again
inconsistent with the aforementioned values because, for
example, when P/fc′Ag = 0.5, the authors’ Ie will be Ig instead of
0.80Ig or 0.90Ig. In addition, when the authors’ value of P/fc′Ag =
–0.05, the authors’ Ie will be 0.55Ig instead of 0.40Ig or 0.50Ig.

3. Based on the test series of Reference 20 (high axial
load ratio), the Ie becomes equal to Ig, and for a wall tested
in Reference 18, the Ie again becomes inconsistent with the
test results.

4. The discusser has studied walls having an hw /lw ratio equal
to or greater than 3.0, as tested in References 1, 4, 7, 9, 12, and
18-21, and the authors presented them in the paper. The
following equation was derived by using Reference 22 concepts

 ≤ 0.8Ig (6)

Equation (6) considers not only the steel stress but also the
width of rectangular walls based on the recommended value
as specified in ACI 318-05.25

5. Based on the aforementioned studies, the discusser
believes that the authors should revisit Eq. (3) and (4) of their
paper so that they become consistent with other research and
other test data. The authors’ proposed Eq. (3) or (4) leads to
an overly conservative design for the practicing structural
engineer and will not be a cost-effective design, especially
for high-rise reinforced concrete buildings.

REFERENCES
18. Riva, P., et al., “Cyclic Behaviour of a Full-Scale RC Structural

Wall,” Technical Report N-18/2002, Dip. di Ingegneria Civile, Universitá
da Brescia, Via Branze, Brescia, Italy. (in Italian)

Effective moment of inertia Ie
Range Recommended value

P/fc′Ag ≥ 0.5 0.70Ig to 0.90Ig 0.80Ig

P/fc′Ag = 0.2 0.50Ig to 0.70Ig 0.60Ig

P/fc′Ag = –0.05 0.30Ig to 0.50Ig 0.40Ig

Ie
14.5

fy

----------
Pu

fc′ Ag

-----------+ Ig=

Ie
24.5

fy

----------
Pu

fc′ Ag

-----------+ Ig=



ACI Structural Journal/July-August 2008 509

19. Lestuzzi, P., et al, “Dynamische Versuche Stahlbetontragwänden
auf dem ETH-Erdbebensimulator,” Bericht Nr. 240, Institut für Baustatik
und Kunstruktion (IBK), ETH, Zurich, Basel:Birkhäuser Verlag, 1999.
(in German)

20. Su, R. K. L., et al., “Seismic Behaviour of Slander Reinforced Concrete
Walls under High Axial Load Ratio,” Engineering Structures, V. 24, 2007,
pp. 1957-1965.

21. Carvajal, O., et al., “Muros de Concreto Reforzades con Armadaro
Minima,” Buletin Technico, Universidad Central de Venezuela, Facultad de
Ingenieria Ano 21, Enero-Diciembre, pp. 72-73. (in Spanish).

22. Priestley, M. J. N., and Hart, G. C., “Design Recommendations for
Period of Vibration of Masonry Wall Building,” Research Report SSRP 89/05,

University of California, San Diego, CA, 1989.
23. Nakazawa, A., et al., “Experimental Study on Shear Behavior of R/C

Wall-Columns—Using High-Strength Reinforcement of 13,000 kg/cm2

Grade—Parts 1-4,” Summaries of Technical Papers, Annual Meeting of
the Architectural Institute of Japan, Tokyo, 1995-1998, pp. 351-358. (in
Japanese)

24. Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced
Concrete and Masonry Buildings, John Wiley & Sons, Inc., New York,
1991, 768 pp.

25. ACI Committee 318, “Building Code Requirements for Structural
Concrete (ACI 318-05) and Commentary (318R-05),” American Concrete
Institute, Farmington Hills, MI, 2005, 430 pp.

Disc. 104-S52/From the September-October 2007 ACI Structural Journal, p. 549

Test of High-Rise Core Wall: Effective Stiffness for Seismic Analysis. Paper by Perry Adebar, Ahmed M. M.
Ibrahim, and Michael Bryson

Discussion by James M. LaFave and Dawn E. Lehman
ACI member, Associate Professor, Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL; Assistant Professor, Department of Civil and
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Structural walls are a commonly-used seismic-force-resisting
system, and reliable models to simulate their response are
certainly needed (especially for walls in high-rise structures).
This paper provides important information related to this
need, and the authors are to be commended for their valuable
contribution. Perhaps most important are the results of the
scaled model test of a slender concrete structural wall that
represents part of the core of a high-rise building. The wall
had a height-to-length (hw/lw) ratio of more than 7, contained
a relatively modest amount of longitudinal reinforcement,
and was subjected to a constant axial compression force
(from top to bottom) of approximately 10% of its gross axial
strength. The lateral loading was applied using an actuator at
the otherwise free top end of the nearly 12 m (39 ft) high
wall, which had a nominally fixed base.

Given the 1625 mm (64 in.) length of the test wall and its
127 mm (5 in.) web thickness, one might consider this wall
model to be at approximately 1/4 of full-scale. It could further
be assumed that the lateral load applied at the top of the wall
might represent something akin to the resultant of a linearly
varying (that is, inverted triangular) lateral-load distribution
over the height of a real building (to achieve a reasonably
correct proportion of moment and shear at the base of the
wall). Under this assumption, the test wall model would
represent an actual (full-scale) structural wall approaching
18 m (59 ft) in height, which is something on the order of a
21-story building. Could the authors briefly comment on
whether this assessment is reasonable, and also as to whether
an acting (gravity) axial load at the base of 0.1fc′Ag is typical
for such a wall or was simply selected for testing expedience?

Assuming that the tested wall represents the bottom 14
stories (or so) of a 21-story building, then one can assess the
relative values of bending moment, shear, and axial force in
the model compared with the theoretical prototype structure.
Moving up the model wall from its base, the bending
moment drops linearly, whereas the rate of change in an
actual building could be less, depending on the building’s
response to any particular ground motion. Furthermore,
whereas the axial compression in the prototype would be
expected to drop almost linearly up the wall (due to the
decreasing number of stories above), the axial load in the
model remains constant throughout, as does the shear force.
The result of these differences suggests that flexural wall

cracking would likely extend even higher in the prototype
structure’s wall than it did in the model test wall. Using the
presented experimental data for lateral load at first visible
cracking, and also at the end of the test (when cracking
extended the equivalent of approximately four stories up the
model wall), the discussers were able to estimate the actual
flexural cracking strength (that is, modulus of rupture) of the
concrete used in the wall to be nearly 0.6√fc′  MPa (8√fc′  psi).
Using that value, the flexural cracking would have most
likely extended upward by one or more additional stories if
the axial compression had actually decreased up the height
of the wall. Consequently, the existing flexural cracks in the
approximate region of the second to fourth floors would have
probably been wider, the extent of reinforcement yielding
near the base of the wall might have been greater, and
residual drifts would have been larger.

The aforementioned discussion can serve as a basis to
explain, in part, why the overall experimental load-displacement
behavior of the model wall appears to be so similar to that
normally associated with post-tensioned concrete walls,
such as the hybrid walls described by Kurama26 and the
partially prestressed wall tested by Holden et al.27 This has
perhaps been amplified by the method of application of the
axial compression load in the authors’ test (that is, via
external bars passing into and centered on the base of the test
specimen). This situation can benefit the structural behavior
in terms of both stiffness and strength along the entire height
of the wall (including minimizing crack formation and crack
opening) without the tendency to contribute to any P-Δ
effects in the way that actual gravity loads would.

At model wall test drifts of approximately 0.5% or more
(beyond the onset of flexural yielding), the discussers further
wonder whether there could have been any additional contri-
bution toward system flexibility from shear distortions
occurring near the base of the wall. It has previously been
noted by Kim et al.28 that, even in reinforced concrete structural
walls having relatively low shear stress demands and levels
of diagonal cracking, the shear deformations can contribute
to the flexibility of the system. This deformation mode is
typically triggered after flexural yielding and would
physically involve slip along the wider flexure cracks,
resulting in behavior even more pinched than for just flexural
yielding. From the figures in the paper, it does not appear that
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instrumentation to explicitly measure this phenomenon was
used in the test, therefore it is difficult to decipher any
contribution of such shearing deformations in this test for
comparison with other test data.

Finally, the discussers found some of the recommendations
for effective stiffness ratio (Ie/Ig) to deviate from their own
findings. The second discusser, along with a colleague, has
studied the effective stiffness as a function of drift from a
variety of experimental structural concrete wall data found in
the literature.5-6,29-36 The considered tests comprise nearly
35 cases, divided roughly evenly between planar rectangular
and barbell wall shapes; nearly half of these tests are the
same as some of those summarized in the authors’ Table 1.
The tests examined by the discussers had wall aspect ratios
(hw/lw) ranging from 1 to more than 6, with axial compression
ratio values (P/fc′Ag) between zero and approximately 0.35.
For these cases, Ie/Ig was seldom more than 0.6 for drifts
beyond approximately 0.3%, nor more than approximately
0.3 for drifts greater than 0.9%, with the exceptions being a
handful of cases where the axial compression ratio was
larger than 0.2fc′Ag. These trends would tend to indicate
somewhat lower effective stiffness values than those
presented by the authors in Fig. 12(c) of their paper.

The discussers appreciate the great challenges and
compromises that must be made in conducting large-scale
laboratory tests and in then applying the results to practice.
Therefore, all of the aforementioned comments are made
primarily in an attempt to address a concern that structural
designers might end up with a bit too optimistic of a view
regarding the equivalent effective flexural stiffness of this
sort of a wall in practice, especially if these results are indeed
to be used across the full spectrum of stated design applications
from push-over analysis to linear dynamic analysis. On the other
hand, actual walls could perhaps exhibit somewhat greater
energy dissipation than that seen in this test.
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AUTHOR’S CLOSURE
The authors appreciate the interest in their paper, which

had three main parts. First and foremost was the presentation
of results from a test on a large-scale model of a concrete
shear wall from the core of a high-rise building. The
thoughtful questions and comments by discussers LaFave
and Lehman regarding the test will be discussed first. The
second part of the paper compared the measured wall
response with a nonlinear flexural stiffness model14 for
concrete shear walls, and the final part was a summary of
work that had previously been done15 on estimating effective
flexural rigidity to account for cracking of concrete shear
walls when using linear dynamic analysis. The comments on
this topic will be briefly discussed at the end.

The prototype wall was assumed to be 73.2 m (240 ft)
high, and to have a height-to-length ratio of 11. The test wall
was assumed to be approximately 1/4-scale, but rather than
applying a varying lateral load over an 18.3 m (60 ft) high
specimen, the resultant lateral point load was applied at
approximately 2/3 that height, and the height of the specimen
was reduced accordingly. The level of axial compression,
10% fc′Ag, was selected because it is a typical value of axial
compression due to gravity loads in high-rise concrete walls.

It is true that the actual shear force and bending moment
diagrams in the prototype wall could be different than what was
applied in the test and depends on the building’s response to any
particular ground motion. The bending moment variation
associated with a first mode distribution of lateral load is of
particular interest as it causes maximum top wall displacements.
The bending moment variation from a point load applied at
approximately 3/4 of a cantilever wall height and a first mode
distribution of lateral load are almost identical from the base
of the wall to approximately midheight.

In an actual high-rise wall, bending moments and shear
forces vary in a complex way, both over the height of the wall
and from one instance to the next. Nonlinear analysis indicates
the shear force (bending moment gradient) will reverse
direction a number of times while the bending moment at the
base of the wall is relatively constant. The objective of the
slow cyclic test on a large test specimen was not to try to
simulate this complex behavior, which can only be done on
a shake table, but to measure the fundamental flexural
behavior of a structural concrete wall with minimal contribution
from shear deformations. The bending moment-curvature
relationship that was measured during the test is that
fundamental property. The constant axial compression over
the height of the wall was not only easier to apply in the test,
but also meant that all bending moment and curvatures
measured over the height of the wall were part of the same
bending moment-curvature relationship for the wall.

It is certainly reasonable to question whether applying a
constant axial compression (rather than a linearly varying
axial compression) had a significant influence on the load-
displacement behavior of the wall. The authors believe that it
did not because the height of wall significantly contributing to
wall drifts was small compared with the 18.3 m (60 ft) height over
which the axial compression should have been reduced to zero.
Due to the maximum lateral load at 2% drift, approximately
15 flexural cracks occurred over a height of 3.6 m (11.8 ft)
above the base. Using this information, and assuming a
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concrete tensile strength in bending of 4.2 MPa (0.61 ksi),
additional flexural cracking would have occurred over a
height of 1.0 m (3.4 ft) if the axial compression had reduced
linearly from 10% fc′Ag at the construction joint to zero at
18.3 m (60 ft) above the base. As the flexural cracks had an
average spacing of 240 mm (9.5 in.), four additional flexural
cracks would have occurred in the wall. In judging whether these
additional cracks would have significantly influenced the load-
deformation response of the wall, it is important to note that
many of the upper flexural cracks in the wall were small under
the maximum lateral load (refer to Table 3) and completely
closed when the lateral load was reduced slightly. That is, these
cracks were closed for most of the load-deformation response of
the wall. Most of the deformation of the wall was the result of
approximately half the cracks over 2 m (6.6 ft) of the wall height
(refer to Fig. 8 and 9). Over this height, the axial compression
should have been reduced by only 11%.

LaFave and Lehman are correct that the method of
applying axial compression load in the test by external bars
attached to the top of the wall and passing through the base
of the wall did not model the P-Δ effect of gravity loads, and
provided some artificial increase in stiffness and strength of
the wall. The question again is how significant was the error
introduced by the simplifications that were necessary to
conduct the test in a laboratory. As drifts are small near the
base of cantilever walls where axial compression is large, the
P-Δ effect is generally much smaller in cantilever walls
compared with frames. The external bars, which passed
through large sleeves in the base of the wall, had an overall
length of 15 m (50 ft). Throughout most of the test, the bars
seemed to pass freely through the base. That is, they did not
appear to be touching the sides of the sleeves. Using the
overall length of the external bars, the horizontal component
of the 1500 kN (342 kip) force in the external bars would be
4.6 kN (1.05 kip) at a top wall displacement of 46 mm
(1.8 in.) when significant yielding of the vertical reinforcement
occurred. This corresponds to 3.5% of the applied lateral
load. Thus, this effect does not appear to have been significant in
the elastic range of the wall.

After yielding of the vertical reinforcement, the lateral
displacement increased without a significant increase in
lateral load. Thus, the percentage increase in lateral load due
to the horizontal component of the external bars used to
apply axial compression does increase. Also, it is possible
that the external bars did contact the sides of the sleeves at
very large top wall displacements. At the maximum drift, the
maximum lateral load applied to the wall was 18% larger
than predicted based on the measured yield strength of the
vertical reinforcement; this increase, however, is partly due
to strain hardening of vertical reinforcement. As the ultimate
strength of the vertical reinforcement was 40% larger than
the yield strength, and calculations indicate 30% of the over-
turning moment was resisted by vertical reinforcement, the
maximum strength increase due to strain hardening was
12%. Thus, it appears that the method of applying axial
compression in the test increased the wall strength by at least
6% and likely approximately 10% at maximum drift. This
error seems acceptable considering how difficult it would
have been to better simulate the influence of gravity loads.
The most important conclusion from this discussion is that if
gravity loads had been exactly simulated, the small strength
increase due to strain hardening of vertical reinforcement
would have been eliminated by the small strength reduction

due to the P-Δ effect of gravity loads, and the load-deformation
response of the test wall would have been very flat.

An important question is why the load-deformation
response of the current test wall was so different than has
been observed with other reinforced concrete walls and so
similar to what has been observed with post-tensioned
concrete walls. The explanation is not in the details of how
the test was conducted, but is the result of an important property
of the wall—namely, the relative amount of flexural resistance
provided by axial compression versus bonded vertical
reinforcement. This explains the flat load-deformation
response discussed previously, and explains the pinching of
hysteresis loops causing reduced energy dissipation. The
latter behavior is related to the bending moment at which
flexural cracks near the base of the wall close due to the axial
compression. An explanation follows. 

If there had been no vertical reinforcement in the test wall,
preexisting flexural cracks in the wall would open and close
(the wall would rock) at an overturning moment equal to
approximately (P/A)S = 857 kNm (632 kip-ft), which for the
critical crack at the construction joint corresponds to a lateral
load of 75.6 kN (17.2 kip). Vertical reinforcement in the wall
that has yielded in tension resists closing of the cracks and
must yield in compression before the flexural cracks will
completely close. If the yield force of the vertical tension
reinforcement is large in relation to the axial compression
force, the flexural cracks will not close until the bending
moment reverses and flexural compression is applied to the
tension reinforcement. This behavior, which results in significant
residual displacements under zero lateral load, has been
observed in most previous tests of reinforced concrete
structures. In the current test wall, the yield force of all
vertical reinforcement in the tension flange and web is equal
to 410 kN (93.5 kip), which is only 27% of the applied axial
compression force at the base of the wall. As the centroid of
this vertical reinforcement is located at 0.4 m (1.3 ft) from
the wall centerline, an axial compression force of 410 kN
(93.5 kip) applied at the wall centerline and bending moment
of 164 kNm (123 kip-ft) is required to yield this reinforcement.
Thus, the overturning moment at which flexural cracks are
predicted to close in the test wall is (1 – 0.27) × 857 – 164 =
462 kNm (342 kip-ft). For the lowest flexural crack at the
construction joint, this corresponds to a lateral load of 41 kN
(9.3 kip). As indicated by the change in slope of the
unloading curves shown in Fig. 5, the flexural cracks were all
closed when the lateral load was less than approximately 40 kN
(9 kip). The residual displacements remaining after the
flexural cracks closed were primarily due to misalignment of
damaged crack surfaces.

LaFave and Lehman question whether there could have
been any contribution toward system flexibility from shear
deformations. The test was designed to measure flexural
response of a concrete shear wall with minimum contribution
from shear deformations. As the maximum shear force that
was expected to be applied in the test was considerably less
than the concrete contribution Vc for a member subjected to
an axial compression of 10% fc′Ag, significant diagonal
cracking was not expected in the test, and no instrumentation
was installed to measure shear deformations. As reported in
the paper, a surprising amount of flexure-shear diagonal
cracking was observed in the web of the wall considering that
the maximum shear stress V/blw was only 0.78 MPa (113 psi)
and the axial compression stress P/A was 4.9 MPa (710 psi). The
deformations at these cracks were carefully observed during
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the test (for example, measured crack widths are reported in
Table 3). Very little shear displacement of the crack surfaces
was observed. Thus it was concluded that the diagonal cracking
did not influence the overall response of the wall other than
increasing the spread of inelastic curvatures (that is, increasing
plastic hinge length).

It is important to note that, when shear deformations
contribute to the flexibility of a wall, the flexural stiffness of
the wall is actually larger than what one would estimate by
ignoring this contribution from shear deformation. Most
other wall tests that have been done to date have had significant
contributions from shear deformations. Because of the
strong influence of shear on the flexural compression stress
distribution and, hence, magnitude of flexural tension, it is
difficult to completely separate the influence of shear from
flexure. It is for this reason that tests on very slender walls,
such as the current test wall, should be used for estimating
the flexural stiffness of high-rise concrete shear walls.

Effective stiffness for linear dynamic analysis
The final part of the paper was a summary of work that had

previously been done by the authors15 on what effective flexural
rigidity should be used in a linear dynamic analysis (such as
response spectrum analysis) to account for cracked sections.
The approach taken in Reference 15 to arrive at the
recommendations summarized in the current paper was to
use the results from a fiber model to develop a simple
nonlinear flexural model14 for typical high-rise concrete
shear walls. This nonlinear model was verified by comparing
predictions with the results of the large-scale test presented
in the current paper. The nonlinear flexural model was then
used to predict the load-displacement response of many
different high-rise walls, and the results of these were used
to develop the recommendations for effective stiffness.

A fundamental assumption used in the previous work is that
effective stiffness of a nonlinear member is the slope of the
elastic portion of an equivalent elastic-plastic load-displacement
relationship that has the same area under the curve as the actual
nonlinear load-displacement relationship. Other authors have
used other ways to determine effective stiffness such as
assuming that the effective stiffness is equal to the secant
stiffness to some predefined point on the nonlinear load-
displacement relationship. Unfortunately, none of the discussers
have indicated how they determined effective stiffness.

The first author and his recent students have continued the
work on effective flexural stiffness of high-rise concrete
shear walls. Rather than use a simple definition of effective
stiffness based on the shape of the nonlinear load-deformation

curve, nonlinear dynamic analysis was used to determine the
maximum displacement of a variety of concrete walls
subjected to a variety of ground motions. The effective stiffness
is that which gives the correct estimate of average maximum
wall displacement using linear dynamic analysis. The nonlinear
load-deformation response of the walls was determined using
the experimentally calibrated nonlinear flexural model.14

The results of this recent work indicates that the effective
stiffness ratio (Ie/Ig) of a concrete shear wall is seldom less
than 0.5, and for tall walls with long initial fundamental
periods, is seldom less than 0.6. In addition to the characteristics
of the ground motion, and initial period of the structure, the
ratio of maximum elastic force demand to strength of the
wall (R factor) is an important parameter that influences
effective stiffness. The level of axial compression has much
less influence than previously thought. Axial compression
does delay the point that the loading curve becomes nonlinear;
but as discussed previously, if the flexural resistance of a wall is
primarily provided by axial compression in concrete rather than
tension in vertical reinforcement, much less energy is dissipated.
This increases maximum wall displacements, which reduces
effective stiffness. The stress at which the vertical reinforcement
yields is not an important parameter.

Discusser Solanki believes the authors should revisit Eq. (3)
and (4) because they are inconsistent with the recommendations
for effective stiffness that he has summarized. First, the
recommendations he has summarized are themselves
inconsistent, as Eq. (5) gives a very different result from Eq. (6).
Second, the lower-bound effective stiffness given by Eq. (4) is
consistent with Eq. (5) at low levels of axial compression, and is
consistent with Eq. (6) at high levels of axial compression for a
wall, which is no more than approximately 30% fc′Ag. The
statement by discusser Solanki that Eq. (3) and (4) lead to
overconservative designs that are not cost-effective is
nonsensical. The critical issue in the design of high-rise
concrete walls is maximum drift demands. Equations (3)
and (4) give higher effective stiffnesses than the other
recommendations for typical values of axial compression
in high-rise concrete walls, which results in lower
maximum drift demands for a given structure or less
concrete structure for a given maximum drift.

There were two typographical errors in the paper: 1) the
column in Table 1 entitled “Axial composition” should be
“Axial compression”; and 2) the definition of the parameter
a in Eq. (2) given immediately below the equation should be
a = 1.1(Icr /Ig)–0.4.

Disc. 104-S57/From the September-October 2007 ACI Structural Journal, p. 601

Justification of ACI 446 Proposal for Updating ACI Code Provisions for Shear Design of Reinforced Concrete
Beams. Paper by Zdenek P. Bažant, Qiang Yu, Walter Gerstle, James Hanson, and J. Woody Ju

Discussion by Evan C. Bentz
ACI member, Associate Professor, University of Toronto, Toronto, ON, Canada

The authors are to be congratulated for writing a compre-
hensive paper that summarizes the opinions of ACI
Committee 446 on fracture mechanics approaches to shear
design. First, it must be noted that the discusser agrees that
the size effect should be included in the shear design
methods of the ACI Code. Whereas the discusser does not

fully agree with the method being proposed, he welcomes
the increased attention to the issue that should result from
this paper. The discusser has the following questions and
comments on the paper:

1. The authors state that it is inappropriate to trust empirical
relations for the effect of depth on shear strength. Despite this,
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they seem willing to accept empirical relations for the effect or
ρ, a/d, fc′ , and all other variables. Is this not inconsistent?

2. The results of the 1991 shear tests of Bažant and
Kazemi4 are clearly important to the decision to apply a fracture
mechanics approach to shear. Is it appropriate, therefore, to
neglect to mention the recent 2005 paper45 that presents the
results of repeat tests that were inconsistent with the original
1991 tests? The authors refer to three of the discussions to
this 2005 paper21-23 but not the paper itself. It would seem
unfair for the readers to be kept in the dark concerning questions
about the repeatability of these experimental results.

3. The paper includes an argument that the 1991 Bažant
and Kazemi4 experiments should be included in the ACI 445-F
database used in this paper. For inclusion in this database,18

member width needed to be at least 2 in. (50 mm). The
authors state that the 1991 beams missed this limit by a
“mere 4%,” as they were 1.90 in. (48 mm) wide. Bažant and
Kazemi4 reported that their beams were 1.5 in. (38 mm)
wide, not 1.90 in. (48 mm) wide, as stated by the authors.
Thus, the member width limit for inclusion in the database
was missed by over 30%, not 4%. It is disconcerting that a
paper by Bažant and colleagues would accidentally base an
argument on factual errors about their own experiments.

4. It is stated that there are only 11 size effect series of tests
available for comparison with the fracture mechanics method.
A recent paper,46 however, includes 24 size effect series.
Recent work on a larger database47 has uncovered additional test
series, giving a total of 38 published size effect series on shear
strength. The authors may wish to expand their database and see
if their conclusions apply to all published size effect tests.

5. The discusser is concerned with the argument being
made in relation to Fig. 5. Because the value of d0 is a statistical
curve-fit parameter, the same individual set of experiments
could show up as fully consistent with the theory of fracture
mechanics whether they showed no size effect, a medium
size effect, or a very strong size effect. Once natural
experimental scatter is included, it would appear that just
about any set of experimental points measured with respect
to size can be declared fully consistent with the theory of
fracture mechanics. This would mean that the theory is non-
falsifiable in terms of its application to the shear strength of
reinforced concrete beams. To demonstrate that the theory is
falsifiable and, therefore, a productive scientific theory, what
predictions can the authors make based on the fracture
mechanics approach to shear that could be used to test the
theory experimentally?

6. Figure 8 shows the results of a fracture mechanics-based
finite element (FE) model predicting the shear strength of
members with stirrups based on a test from Toronto.11 The
discusser is surprised at the predicted shear strength values
shown in Fig. 8(b). Scaling off the figure, the theoretically
predicted shear stress at shear failure on the top part of the
figure is 189 psi (1.30 MPa). Is it a coincidence that the
ACI Code also predicts the same shear stress at failure of
2√4870 + 50 = 189 psi (1.30 MPa)? It appears that the finite
element results have been curve-fit to match the ACI Code
for the particular details of the Toronto test. Should the reader
interpret this as a vote of validation for the ACI Code method
for members with stirrups? Is not the relatively complex
statistical discussion on the page leading up to this figure
invalidated by having theoretical FE results in the paper
showing that the fracture mechanics approach gives the same
answers as the existing ACI Code for members of a large
depth with stirrups?
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AUTHORS’ CLOSURE
The authors deeply appreciate the thoughtful and stimulating

questions of discusser Bentz, which provide an opportunity to
clarify points that were not specifically addressed in the
paper. His six points are answered as follows:

1. The reason why empirical relations can be used for the
effects of steel ratio ρw, relative shear-span ratio a/d, and
concrete compressive strength fc′ , but not for the effect of
size, is the difference between interpolation and extrapolation.
Interpolation of experimental data can provide sufficient
accuracy, but extrapolation cannot. Extrapolation can be
trusted only if it is based on a good theory that must, of
course, be verified by experiments.

The experiments can be of different kinds, for example,
reduced scale tests with reduced aggregate size and tests of
specimens with different geometries. For ρw, a/d, fc′ , and da,
beam shear tests can, and have been, conducted to cover the
entire practical ranges of these variables, sampling them with
an almost uniform statistical density of distribution. But for
the effect of size, unfortunately, the existing database has an
enormous statistical bias for small sizes. The practical range
of interest extends from depth d ≈ 50 mm (19.7 in.) to at least
15 m (or 50 ft). For example, the depth of the girder of the
Koror-Babeldaob Bridge in Palau, which collapsed, was
14.2 m (or 46.5 ft). In the ACI 445 database,18 however, 86%
of all the data pertain to d < 0.5 m (19.7 in.), 99% to d < 1.1 m
(43.3 in.), and 100% for d < 2.0 m (79 in.).

Therefore, the design for d > 0.5 m (19.7 in.) represents
predominantly, and for d > 1 m (39.4 in.) almost totally, an
extrapolation. It is because of the cost of large-scale tests that
beams with d > 3 m (118.1 in.) have never been tested to
failure, and generally for any size d > 1 m (39.4 in.), it is next
to impossible to conduct failure tests to cover the entire range
of ρw, a/d, fc′ , and da. On the other hand, for small beams,
the ACI 445 database does cover the entire range of these
influencing variables, and does so with reasonable uniformity.
So, the semi-empirical relations for the effect of these four
parameters, which are based mainly on the research of
Shioya and Akiyama,7 Kani,8 Reineck et al.,18and Pauw,48

are adequate and can be trusted. For the effect of size d,
empirical formulas could be trusted for d < 0.5 m (19.7 in.),
which is still interpolation, but not for extension to larger
sizes d, which represent extrapolation, yet are of the main
interest for practice. A well founded, experimentally verified
theory is the only one to trust.

2. There was no intention to “keep the readers in the dark”
about the Bentz’s 2005 paper.45 Although this paper
presented very valuable new test results, it was not referenced
because, if it were, some extraneous comments would have
been necessary. In particular, it would have been necessary
to explain why the interpretation of the 1991 tests of Bažant
and Kazemi4 was misleading, and the length limit of ACI
papers did not allow for adding such an explanation. Contrary to
what was claimed, the experiments that Bentz reported in that
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paper were not a realistic reproduction of the 1991 experiments,
as explained in the cited discussion of his paper.

3. As Bentz pointed out, the width of the 1991 test specimen
was indeed 38 mm (1.5 in.),4 not 48 mm (1.90 in.), and we
regret the error. However, Bentz’s argument for excluding
these tests from the database is nonetheless invalid. It has
been well documented that the beam width increase has a
negligible effect on the shear strength if it exceeds approximately
four aggregate sizes, and the width of the 1991 test specimens
was eight aggregate sizes. Therefore, the beams 38 mm
(1.5 in.) wide must have given the same results for shear
strength vc as beams 254 mm (10 in.) wide, and thus there
was no reason to exclude them from the ACI database. This
exclusion has been especially unfortunate for the advocates
of fracture mechanics-based theory of size effect on beam
shear strength because these reduced-scale tests provide the
best experimental support for the applicability of this theory.

4. Bentz claims that 24, rather than 11, size effect test
series are available for comparison to the fracture
mechanics-based theory.46 From careful examination, however,
it transpires that his expansion of the size-effect database is
mainly due to questionable loosening of the requirement for
geometric similarity and questionable narrowing of the
requirement for breadth of the size range. The required range is
proportional to the scatter band width (in the log-log plot); it
must exceed it by a factor of at least 6 (this follows from the
requirement that ωy|x/ωx < 0.1549). Otherwise, the regression
line has a great error.49,50 In the size effect tests used in the
paper, most of the test series have a size range greater than
1:8, which is barely sufficient to obtain unambiguous results.
In the size effect tests collected by Bentz, over half of the test
series have a size range close to 1:4, which is statistically
insufficient for determining the size effect. The acceptance
of data with insufficient size range is what led Bentz to
questionable conclusions about the size effect.46

5. Regarding Fig. 5, it must be emphasized that d0 is not a
curve-fitting parameter. Based on fracture mechanics, d0 can
be calculated from the dimensionless energy release function
g(α) (obtainable from handbooks) and the material characteristic
length identified from tests of fracture specimens of different
sizes. To calculate function g(α) for shear of a reinforced
concrete beam, a complete analysis of propagation of diagonal,
flexural, and compressive shear cracks would be needed.
This is a difficult problem, not yet solved. It is for this reason
that the size effect formulation proposed in the paper could
not be based on a theory in its entirety.

Bentz is right that data exhibiting size effects of different
slopes in the log-log plot could be matched to the proposed
size effect equation just by adjusting d0, so that the data
would get positioned on the portion of the size effect curve
that has the appropriate slope. Such ambiguous, or falsifiable,
matching, however, is possible only for test data of limited size
range (<1:4). The match becomes unique for data of a broad
enough size range for which the transition from a near-zero slope
to the slope of –1/2 in a log-log size effect plot is clearly visible.
Data whose range is broad enough to show the transition from
zero slope to slope –1/2 cannot be fitted by other proposed size
effect equations, including the power law of exponent –1/3 (as
proposed in ACI 445) or –1/4 (according to the JSCE equation).
Also, they certainly cannot be fitted by the modified
compression field theory, which gives a size effect curve
terminating, in the log-log plot, with the slope of –1 (that is, a
power law of exponent –1). Such an excessive slope is

theoretically unjustifiable, thermodynamically impossible,
and has no experimental support.

6. The discusser is not right in saying that “the finite
element results have been curve fit to match the ACI Code,”
nor is he right in regarding the shear strength values in Fig. 8(b),
computed for beams with stirrups by a fracture mechanics-
based finite element code, as a “vote of validation of ACI
Code method for beams with stirrups.” The problem is that
he, like most researchers in this field, overlooked the covert
safety margin that is hidden in the ACI Code provisions (as
discussed in detail in Reference 41), and is not uncovered unless
one carefully examines the database used in setting up the code
equation. The safety margins separating the ACI Code equation
from the experimental database must be the same as those
separating the Toronto experiments from those equations (or
else that covert safety margin would be unnecessary and could
be removed from the ACI Code or, in other words, the factor of
2 in the formula vc = 2  could be increased).

The finite element calculations were based on the mean
compression strength of concrete (which was reported as fc =
33.6 MPa [4870 psi]). The discusser does not take into
account that the ACI Code equation vc = 2  was not set
to match the mean of the database points (as seen in Fig. 1 of
the paper). Rather, it was set to lie at the lower margin of this
database, representing a 5% probability cutoff (as calculated
from a Gaussian distribution of vc fitted to the database). This
cutoff equals 65% of the mean vc (as marked in Fig. 1 of the
paper; for more detail, refer to Fig. 1(a) of Reference 41).

Consequently, the value of vc = 0.96 MPa (140 psi), which
Bentz calculated from fcr′  according to the ACI Code equation,
is not the expected experimental value of vc (in the sense of the
expectation E in statistics). Rather, the expected experimental
value is vc = 0.96/0.65 = 1.48 MPa (215 psi), and this value is
1.54 (= 1/0.65) times higher than the experimental result in the
Toronto tests. Thus it must be concluded that the ACI Code
equation, when applied to the beams of the size tested in the
Toronto tests, overpredicts vc by 54%.

The value of vc is, of course, random. Were it possible to
test not one but hundreds of beams of the same large depth,
with many different concretes, different shear spans, and
different longitudinal and stirrup steel ratios, covering the
entire ranges of these variables, surely a statistical distribution
of vc with a large standard deviation would be found. To
suppose that the Toronto result lies below the 5% cutoff of
this undocumented distribution, however, would be dangerous,
wishful thinking.

To get a clue where the vc value from the Toronto large
beam test is positioned on this distribution, one would need
to carry out, with the same concrete, geometrically similar,
reduced-scale tests for depth d between 0.152 and 0.254 m
(6 and 10 in.). Within that range, many test results are available
to determine the statistical distribution of vc (which may be
assumed to be Gaussian), and many more can be generated at
low cost. It may now be checked to which cutoff probability the
reduced-scale test corresponds on this distribution (marked
in Fig. 4 of Reference 51 by distance a from the mean). It is
then logical to assume that the Toronto large beam test would
correspond to the same probability cutoff (distance a from
the mean) on the distribution of vc if it could be tested for that
size. In this way, the error of the ACI Code equation could be
assessed. For beams without stirrups, this was demonstrated
in Reference 51. It must be concluded that the ACI Code
equation overpredicts the shear stress vc in the large beam
by almost 54%. This is serious indeed. So the calculation

fcr′

fcr′
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in the paper is not a “vote of validation for the ACI Code
method.” Rather, it raises a serious question about the factor
of safety of the ACI Code equation when applied to large
beams with stirrups. If the size effect is ignored, the safety
margins are reduced.
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Disc. 104-S58/From the September-October 2007 ACI Structural Journal, p. 611

Investigation of Deep Beams with Various Load Configurations. Paper by Michael D. Brown and
Oguzhan Bayrak

Discussion by Dipak Kumar Sahoo, Bhupinder Singh, and Pradeep Bhargava
Research Scholar, Indian Institute of Technology, Roorkee, India; Assistant Professor, Indian Institute of Technology; and Professor, Indian Institute of Technology

The authors are to be complimented for their comprehensive
and elaborate investigation of the behavior of deep beams
under various load configurations. In the context of the
investigation, the authors would like to respond to the
following issues:

1. At the outset, attention is drawn to what seem to be
printing errors in the 7th column of Table 1. The south
reaction for Specimen UL-0-8.5 should be 204 kN (45.9 kip)
instead of 2040 kN (458.6 kip) and that for Specimen CL-8.5-0
should be 124 kN (27.9 kip) instead of 1240 kN (278.8 kip).

2. For a more realistic assessment and comparison of the
test results, normalized ultimate load (ultimate load per unit
concrete strength), normalized cracking load (cracking load
per unit concrete strength), and effective transverse reinforcement
ratio calculated on the basis of the corrected Eq. (A-4) of
ACI 318-05, Appendix A, have been tabulated in Table A.
Keeping in mind that the strut efficiency is not expected to
significantly vary with concrete strengths in the range of 16.3
to 22.3 MPa (2364.1 to 3234.3 psi) (Table 1), the following
observations are made with respect to the normalized loads of
Table 3:

a. Among the specimens with distributed loading, the
ascending order based on ultimate strengths with reference to
ACI-STM provisions for strut efficiency factors ought to be

UL-0-0 < UL-17-0 < UL-17-17 = UL-0-8.5 = UL-8.5-0a = UL-8.5-0b

The order, as seen in Table 1 and Fig.7, is

UL-0-8.5 < UL-0-0 < UL-17-17 < UL-8.5-0b < UL-17-0 < UL-8.5-0a

The order, as per the normalized ultimate loads presented
in Table 3, is

UL-0-0 < UL-0-8.5 < UL-17-17 ≈ UL-8.5-0b ≈ UL-17.-0 < UL-8.5-0a

The authors may like to address this inconsistency in
specimen behavior.

b. A comparison between Specimens CL-0-0 and CL-8.5-0
shows that normalized ultimate load and normalized cracking
load of the former having no web reinforcement are
significantly higher than those of the latter satisfying web
reinforcement requirements of Eq. (A-4), in ACI 318-05,
Appendix A.1 The authors have attributed this aberration to
the large amount of scatter usually associated with results of
shear behavior of concrete beams. The ratios of cracking
load to ultimate load for Specimens CL-0-0 and CL-8.5-0,
however, are 0.89 and 0.51, respectively (Fig. 7). The relatively
lower ratio of 0.51 in the case of Specimen CL-8.5-0 indicates
that web reinforcement has significantly improved the
post-cracking load-carrying capacity of this specimen.

c. On the basis of the observed shear behavior of
Specimens UL-0-0 and UL-0-8.5, the authors state that the
horizontal shear reinforcement did not positively affect the
shear strength of the specimens, and the large variation in

Table A—Normalized ultimate and cracking loads

Specimen ID
Concrete strength, 

MPa (psi)

Effective transverse reinforcement 
ratio, as per ACI 318-05, Eq. (A-4)

Effective transverse reinforcement 
ratio (corrected) 

Normalized ultimate 
load, kN/MPa (lb/psi)

Normalized cracking 
load, kN/MPa (lb/psi)

UL-8.5-0a 16.8 (2440) 0.0031 0.0022 56.9 (88.3) 17 (26.4)

UL-8.5-0b 18.2 (2640) 0.0031 0.0022 46.4 (72) 17.1 (26.5)

UL-0-0 22.3 (3230) 0 0 36.6 (56.8) 16.7 (25.9)

UL-0-8.5 18.2 (2640) 0.0031 0.0022 41.5 (64.4) 25.3 (39.3)

UL-17-17 18.3 (2660) 0.0031 0.0022 46.1 (71.5) 20.4 (31.7)

UL-17-0 18.3 (2660) 0.0016 0.0011 46.5 (72.2) 20.1 (31.2)

2C-8.5-0 22.1 (3210) 0.0031 0.0022 33.3 (51.7) 8.4 (13)

2C-0.0 22.1 (3210) 0 0 24.1 (37.4) 13.8 (21.4)

CL-8.5-0 17.8 (2580) 0.0034 0.0024 26.7 (41.4) 13.6 (21.1)

CL-0-0 16.3 (2370) 0 0 34.5 (53.5) 22.6 (35.1)

Asi

bssi

--------∑ αisin=
Asi

bssi

--------∑ sin
2
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ultimate strength between these two specimens is ascribed to
the differences in concrete strengths. The ultimate loads
reported for Specimens UL-0-0 and UL-0-8.5 in Table 1
are 817 and 755 kN (184 and 170 kip), respectively, but
when these loads are interpreted in terms of normalized ultimate
loads, the corresponding values for Specimens UL-0-0 and
UL-0-8.5, as reported in Table A, are 36.6 and 41.5 kN/MPa
(56.8 and 64.4 lb/psi), respectively, which clearly reflect the
influence of horizontal reinforcement on the shear strength of
the specimens. Kong et al.11 have reported that, depending on
span-depth ratio L/D and shear span-depth ratio a/D, both
vertical as well as horizontal web reinforcement influence
the load-carrying capacity of deep beams.

3. It is appreciated that reinforcement will not have a
significant influence on diagonal cracking load. Because,
prior to cracking, shear is resisted by concrete alone, the
diagonal cracking load should be dependent on the crushing
strength of concrete. With reference to the data in Fig. 8,
although the concrete crushing strength of Specimen CL-0-0
is 26% less than that of Specimen 2C-0-0, the former has
21% higher diagonal cracking load compared with the latter.

4. It would be instructive if the authors could clearly
identify which of the following failure modes mentioned in
the paper correspond to which of the beams used in their
investigation: a) diagonal tension; b) crushing of concrete;
and c) splitting failure of the strut.

5. Calculation of effective transverse reinforcement
requirement and the minimum strut width for a diagonal strut
depends on the inclination of the diagonal strut that, in turn,
depends on the size of the bearing plates. Therefore, the
authors may like to indicate the size of the bearing plates
used at the loading points.
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AUTHORS’ CLOSURE
The authors thank the discussers for their interest in the

paper and critical evaluation of the work presented therein.
The authors would like to provide answers for or comment
on each one of the points raised by the discussers using the
same reference/numbering scheme:

1. The discussers are correct. The errors they have indicated
are typographical.

2. The author’s are unaware of any lack of realism in the
analysis of the data as presented in the paper.

a. It should be noted that the lists of specimens based on
the actual failure loads and the normalized failure loads

mentioned by the discussers differ only in the order of the
two weakest specimens. The authors are not aware of any
inconsistency among the specimens. As indicated in the
paper, the authors suggest that only small amounts of transverse
reinforcement are necessary to enhance the failure loads of
the specimens. Hence, specimens without transverse
reinforcement failed at loads less than those with transverse
reinforcement. That point is evident in either of the two
lists of specimens presented by the discussers.

b. Specimen CL-8.5-0 failed at an ultimate load less than
Specimen CL-0-0. The authors are unaware of the basis for
the discussers’ claim that Specimen CL-8.5-0 had a “signif-
icantly improved” post-cracking strength.

c. The greatest shear span-depth ratio of the specimens
tested by Kong et al.11 was 0.7. This value is much smaller
than any of the specimens tested by the authors. Due to
dissimilarity in the specimens, it is unclear how to compare
the differing conclusions regarding the effectiveness of
horizontal reinforcement. It should be noted, however, that
the uniformly loaded specimen with only horizontal web
reinforcement (UL-0-8.5) ranked near the weakest specimen
in either of the discussers’ lists in the previous comment.
These results indicate that horizontal web reinforcement
appears to be less beneficial than vertical web reinforcement.

3. The authors are unclear as to the point the discussers
have raised. The cracking of concrete is related to its tensile
strength rather than its compressive strength. The relationship
between those two types of strength is approximate at best.
The authors did not measure the tensile strength of the
concrete as part of this study; thus, no analysis of the relationship
between cracking load and tensile strength can be made. 

4. It should be noted that the authors consider diagonal
tension and splitting failure of the strut to be a single failure
mechanism. Based on the photos presented in the paper,
crushing of concrete is clearly visible in Specimens UL-17-0,
UL-805-0a, and UL-80.5-0b. All other specimens failed
through splitting of the strut.

5. As described in the original paper, the bearing plates
were 6 x 6 in. (152 x152 mm) at the north reaction and 6 x 8 in.
(152 x 203 mm) at the south reaction. For specimens
subjected to uniform loading, the loading plates were 3.5 in.
(89 mm) in length. There was a 0.5 in. (13 mm) gap between
adjacent plates. For specimens subjected to a single
concentrated load, the bearing plate at the loading point was
8 in. (203 mm) in length. For specimens subjected to a pair
of concentrated loads, the bearing plates were 6 in. (152 mm)
in length. All bearing plates covered the full width of the
beam specimens.

Disc. SP-246–10/From ACI Special Publication 246, Structural Implications of Shrinkage and Creep, p. 167

Effect of Shrinkage on Short-Term Deflections of Reinforced Concrete Beams and Slabs. Paper by Peter H.
Bischoff and Ryan D. Johnson

Discussion by Gintaris Kaklauskas, Viktor Gribniak, and Darius Bacinskas
Professor, Head of Department, Vilnius Gediminas Technical University (VGTU), Vilnius, Lithuania; Researcher, VGTU; and Associate Professor, VGTU

The authors are to be congratulated for raising an important,
but unjustly neglected, issue. In general practice, effects of
shrinkage and creep are taken into account in prestress loss
and/or long-term deformation analysis. Even at first loading,
however, free shrinkage strain of concrete may be of such

magnitude that well exceeds the cracking strain. Due to
restraining action of reinforcement, shrinkage-induced
tension stresses in concrete may significantly reduce crack
resistance and increase deformations of reinforced concrete
(RC) members subjected to short-term loading. Most of the
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techniques, however, do not take into account these effects in
the short-term analysis.

In a series of publications, the first author and his associates
have shown influence of shrinkage effect on tension stiffening
and deformations of RC members subjected to short-term
axial tension. Bischoff has proposed three analytical
techniques based on load sharing and tension stiffening strain
concepts. Using test data of shrunk RC tension members,
Fields and Bischoff4 have derived a tension-stiffening stress-
stress relationship free of shrinkage effects. Therefore, the
paper under discussion dealing with bending members was a
logical continuation of the research. The proposed analytical
technique as well as new experimental data is a significant
contribution to the state of the art of the issue.

The authors have reported results on tests of four RC
beams with identical nominal geometrical parameters and
cast from the same batch of concrete. One couple of the
beams was protected from shrinking and tested at 14 days,
whereas the second couple after 14 days of wet curing was
exposed to drying condition and tested at 62 days. The test
moment-deflection diagrams are shown in Fig. A(a) along
with the analysis results performed by the ACI 318-051 and
Eurocode 213 techniques. The analysis was based on the
reported cylinder strength of concrete. As shown in Fig. A(a),
the code techniques accurately predicted the behavior of
shrunk beams, whereas deflections of nonshrunk beams
were overestimated. This suggests that the codes indirectly
assess the effect of shrinkage.

Applicability of code methods is limited to simple cases of
loading and structural shapes. A simple approach, extensively
used in numerical modeling, is based on a smeared crack
model and use of a stress-strain relationship of cracked
tensile concrete. Stress in the concrete is taken as the
combined stress due to tension stiffening and tension softening,
collectively called the tension stiffening. Most the tension
stiffening relationships were derived in a straightforward
manner from tensile tests of RC members.4 Kaklauskas and
Ghaboussi14 have proposed a method for deriving tension

stiffening relationships from test data of flexural RC
members. This method is based on plane section hypothesis
and employs moment-curvature or moment-average strain
(at any layer) diagrams. Using the equilibrium equations, the
stress-strain (tension stiffening) relationships are computed
incrementally for the extreme fiber of tensile concrete. In this
inverse approach, the previously computed portions of the
stress-strain relationship at each load increment are used to
compute the current increments of the stress-strain relationship.

In present analysis, moment-curvature diagrams were
obtained from the test moment-deflection relationships
shown in Fig. A(a). The conversion error due to the disregard of
shear effects was insignificant, as the beams were tested
under a four-point bending scheme. Tension stiffening
relationships derived by the aforementioned method are
shown in Fig. A(b) with the normalized stresses where the
tension strength is according to Eurocode 2.13 Though a
good match between the curves of the twin specimens was
obtained, disagreement for the shrunk and nonshrunk beams
was significant. The shrunk beams have shown much less
tension stiffening effect than the nonshrunk beams. The
maximal stresses for the shrunk beams were well below the
tension strength. The cracking resistance was reduced by the
shrinkage-induced tension stresses in concrete.

The aforementioned differences were due to the coupling
of tension stiffening with shrinkage in the shrunk beams. In
this study, shrinkage effect was eliminated from the
tension stiffening relationships. The analysis was based on
the layer approach that combined the direct15 and the
inverse14 techniques, assuming reverse (expansion)
shrinkage strain. A free shrinkage strain was calculated by
the Eurocode 213 technique assuming normal indoor
conditions.16 The computed tension stiffening relationships
with eliminated shrinkage effects are shown in Fig. A(c).
The relationships obtained from the shrunk and nonshrunk
members have approached each other and most parts have
practically coincided. Only small portions with maximal
stresses (corresponding to the initiation of cracking) differed,

Fig. A—Shrinkage effect on deformation behavior of reinforced concrete beams.
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but they practically had little effect on overall load-
deflection behavior of the beams. It should be noted that
these curves were in good agreement with the tension
stiffening relationship proposed by Fields and Bischoff4

(refer to Fig. A(c)). As noted, the latter was derived from
tension RC members by eliminating shrinkage effect. It
should be remembered that the shape of tension stiffening
relationships may depend on a number of parameters such
as reinforcement bar diameter and bond characteristics,
reinforcement ratio and bar distribution, section height,
and cover.

A load-deflection diagram calculated by the layered
model15 using the relationship proposed by Fields and
Bischoff4 along with the originally reported experimental data
is shown in Fig. A(d). The calculated moment-deflection
diagram well predicted deflections of the nonshrunk beams.

In deriving most tension-stiffening relationships, the
shrinkage effect was neglected. Shrinkage may significantly
change the shape of the tension-stiffening relationship.
Therefore, future tests should either eliminate shrinkage or
carry out shrinkage and associated creep recordings for
subsequent numerical elimination of this effect.
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AUTHORS’ CLOSURE
Interest expressed in the authors’ paper is appreciated and

the need to consider shrinkage and creep effects is reiterated
in the discussion. The discussers go on to compare the
authors’ test results with design approaches used by ACI
318-05 and Eurocode 2, followed by a discussion of numerical
modeling and development of a stress-strain relationship for
cracked concrete that was originally introduced by
Scanlon17,18 to account for tension stiffening of concrete. The
observed correlation between tension stiffening results from
axial tension members and flexural members is encouraging.

Tension stiffening in beams is controlled by the cracking
moment, and member stiffness is reduced when a lower
cracking moment is used in either the ACI 318-05 or
Eurocode 2 approaches for computing deflection. Hence,
accurate prediction of deflection is dependent on having the
correct cracking moment.6 The cracking moment depends on
the rupture modulus fr of the concrete, and the authors’
control tests gave a measured value of fr equal to 5.2 MPa
(750 psi) (corresponding to 0.78  MPa [113.1  psi)
that was 25% greater than the ACI computed value of
0.62  = 4.2 MPa (7.5  = 600 psi). Development of
tensile stresses from restraint to shrinkage probably reduced
the apparent cracking stress to a value close to the ACI
computed value, which is the reason why the discussers
found that the code techniques gave a fairly reasonable

response prediction for the members that were allowed to
shrink. Similar reasoning explains why the deflection
response of the beams without any shrinkage restraint would
be overestimated.

Code values for the rupture modulus represent a lower
bound on tensile strength, and fr can vary anywhere from
0.62  to 1.0  MPa (7.5  to 12.0 psi).8 Hence,
the fact that the observed cracking moment in the preshrunk
beams corresponded to the ACI computed value is fortuitous.
The first author of the paper has often carried out tests with
concrete having a measured rupture modulus closer to
0.62  (7.5 ) and, in this instance, the code approach
would have underestimated member deflection of beams
allowed to shrink before loading because the experimental
(restrained) cracking moment would then be less than the
ACI computed value.6

Despite the apparently good fit using either the ACI or
Eurocode 2 approach for computing the response of the two
beams that were allowed to shrink prior to loading (Fig. A(a)),
the discussion fails to reconcile the fact that the measured
response of these beams actually crosses over the Icr
response because of shrinkage (refer to Fig. 5 of the paper).
Both the ACI and Eurocode 2 response gradually approach
(but never cross) the Icr response as tension stiffening
decreases under increasing load. The effect of having the
member response cross over the bare bar response is much
easier to observe in axial tension members (Fig. 2 of the
paper) and an explanation of this phenomenon constitutes
one of the main messages in the paper. While the lower
cracking moment that results from restraint to shrinkage is
easily taken into account when computing deflection,6 the
corresponding shift in the Icr response is less well understood
and most often ignored for this reason.

Tension stiffening represents tension carried by the
concrete between cracks and is characterized by the difference
between the measured member response and Icr response, as
shown in Fig. 5 for the four beams tested. Based on this
observation, the beams that are allowed to shrink will appear
to exhibit less tension stiffening unless the Icr response is
shifted over to the right (away from the member response).
In fact, tension stiffening becomes negative once the member
response crosses over the Icr response and indicates that the
concrete in the tensile zone is in compression, which of
course is ridiculous. Figure A(c) from the discussion
confirms there is little difference in tension stiffening
between beams with or without shrinkage as long as the analysis
takes shrinkage into account. Hence, any discrepancies or
conflicting results that are sometimes observed between
different research programs could well arise from failure to
consider shrinkage effects; further work is needed in this
area as pointed out in the discussion.
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