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The effective moment of inertia expression proposed by Branson in
1963 and incorporated into the ACI Code is reevaluated. It is
found that Branson’s expression is valid for members with steel
reinforcement ratios greater than 1%. This expression, however,
overestimates member stiffness at lower reinforcement ratios and
gives a member deflection less than expected as demonstrated by
comparison with test results. Branson’s approach also underestimates
deflection of slender walls with a central layer of reinforcement, as
well as deflection of fiber-reinforced polymer (FRP)-reinforced
concrete beams. An alternative expression is presented that is
shown to be valid for all reinforcement ratios for both steel and
FRP reinforcement.
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INTRODUCTION
In 1966, ACI Committee 435 published “Deflections of

Reinforced Concrete Flexural Members” (ACI Committee
435 1966). The report includes a comparison of several
methods for computing immediate deflection including the
effects of cracking on member response. The methods
compared included the ACI Code method in use at the time
(ACI Committee 318 1963) and the effective moment of
inertia approach proposed by Branson (1963).

The ACI 318-63 approach considered two cases:
1. ρfy < 500 psi (3.45 MPa), use the uncracked gross

section moment of inertia Ig to compute immediate deflection at
service load levels; and

2. ρfy > 500 psi (3.45 MPa), use the cracked transformed
section moment of inertia Icr to compute immediate deflection
at service load levels. 

For Grade 60 (415 MPa) reinforcement, the transition
occurs at ρ = 0.833%.

The effective moment of inertia Ie approach introduced by
Branson allows for a gradual transition from uncracked to
cracked transformed section as the ratio of service load
moment Ma to cracking moment Mcr increases. This transition
is given by the expression below, and a plot of Ie /Ig versus ρ
is shown in Fig. 1 for both approaches. 

(1)

The committee compared calculated deflections with
measured deflections for several sets of laboratory tested
beams. The test beams had ρ values ranging from 1 to 3.2%.
In this range, Branson’s Ie approaches Icr as shown in Fig. 1.
Based on the comparison with test results, the committee
concluded that both the ACI 318-63 method and Branson’s
Ie method were adequate for practical purposes in predicting
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immediate deflections. ACI 318 subsequently adopted the
Branson Ie expression for inclusion in the 1971 ACI Code
(ACI Committee 318 1971), and this is currently the
prescribed method in the ACI Code (ACI Committee 318 2005).

The comparison with test results did not include beams
with reinforcement ratios in the lower range (ρ < 1%), which
is more typical of slabs and lightly reinforced beams.
Concerns have been raised that Branson’s Ie equation is
adequate for moderate to high reinforcement ratios but tends
to underpredict immediate deflections at low reinforcement
ratios (Bischoff 2005a,b). This problem is reflected by
amendments to the Australian Standard AS3600 (1994)
limiting Ie to a value of 0.6Ig for flexure members with a
reinforcing ratio less than 0.5% (Gilbert 2001). In addition,
past efforts to apply Branson’s equation to members reinforced
with fiber reinforced polymer (FRP) bars have found that a
correction factor is necessary to correct for overprediction of
member stiffness (ACI Committee 440 2006). In this paper,
a formulation of the effective moment of inertia is presented
that is applicable to all ranges of reinforcement ratio for steel
reinforcement as well as FRP reinforcement.

RESEARCH SIGNIFICANCE
The results presented in this paper are directly applicable

to design practice related to deflection control of structural
concrete members. This paper deals with computation of
short-term (immediate) deflections only. Proposed changes
to ACI 318 are presented.
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Fig. 1—Effective moment of inertia at service loads (Ma =
2/3Mn).
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FLEXURAL BEHAVIOR AT SERVICE LOAD LEVELS
The flexural stiffness of a concrete beam varies along its

length due to the presence of cracking that can occur from
the applied loading and possibly tension stress caused by
shrinkage restraint. At crack locations, the concrete carries
essentially zero tension. Between cracks, however, the
concrete participates in resisting tensile stress because of
bond between the reinforcement and concrete. This effect is
often referred to as tension stiffening and is taken into
account with the effective moment of inertia Ie.

Simple spring models are used to demonstrate the effect of
stiffness variation along a member. Examples are given in
Fig. 2 for linear and rotational springs arranged in both series
and parallel. The value P represents the axial load for linear
springs and moment for rotational springs. The term Δ
represents displacement for linear springs and rotation for
rotational springs, whereas the term k represents stiffness for
both linear and rotational springs. Applying equilibrium and
compatibility to the linear elastic systems gives the
following expressions for effective stiffness of the two
spring models considered:

1) Springs in series

(2)

2) Springs in parallel

ke = k1 + k2 (3)

From examination of the deformed shapes, it is clear that
the springs-in-series model is more appropriate for members
with discrete cracks along the member. This suggests that the
interpolation formula to model tension stiffening should be
based on a weighted average of flexibility rather than stiffness
(Bischoff 2005a). This then leads to a subtle change in
Branson’s original expression, giving

(4a)

By rearranging terms, Eq. (4a) can be rewritten as

(4b)

It is found that a value of m = 2 in Eq. (4) correlates well
with Branson’s original formulation where the power m = 3.
This correlation is carried out for a beam cross section with

1
ke

---- 1
k1

---- 1
k2

----+=

1
Ie

----
Mcr

Ma

---------⎝ ⎠
⎛ ⎞ m 1

Ig

---- 1
Mcr

Ma

---------⎝ ⎠
⎛ ⎞m

–⎝ ⎠
⎛ ⎞ 1

Icr

------ 1
Ig

----≥+=

Ie
Icr

1
Mcr

Ma

---------⎝ ⎠
⎛ ⎞ m

1
Icr

Ig

------––

------------------------------------------------ Ig≤=

a ratio of Ig/Icr = 2.2 (ρ ≈ 1.5%), and is representative of the
beams used by ACI 435 to verify Branson’s equation.

COMPARISON OF EFFECTIVE MOMENT 
CURVATURE RELATIONSHIPS

Moment-curvature relationships based on the effective
moment of inertia concept are plotted in Fig. 3 to compare
the original Branson formulation with the approach
proposed by Bischoff (2005a). Reinforcement ratios of 1.5,
1.0, 0.5, and 0.3% are considered. The applied moment Ma
is assumed to be 2/3 of the nominal flexural strength Mn,
based on Grade 60 reinforcement ( fy = 60 ksi [415 MPa]).
Calculations are carried out for a 300 mm (12 in.) wide by
200 mm (8 in.) deep section representative of slabs, and fc′ is
taken as 27.6 MPa (4000 psi).

The plots shown in Fig. 3 demonstrate that the effective
moment of inertia corresponding to the service load moment
Ma is insensitive to the formulation of Ie at the higher rein-
forcement ratios above 1%. Differences between the Branson
expression and proposed approach are less than a few percent
in this case. At the lower reinforcement ratios (0.3 and 0.5%),
there is a significant difference in Ie, with Branson’s original
expression displaying a much stiffer response than the
proposed alternative form. Deflections calculated with
Branson’s expression for Ie can be as much as 50% less than
deflection calculations using the alternative approach.

Branson’s Eq. (1) only works well for flexure members
with an Ig/Icr ratio less than approximately 3, and this
corresponds to beams and slabs with a steel reinforcing ratio
greater than 1% (refer to Fig. 4). This expression for Ie
essentially represents a weighted average of two springs in
parallel (Fig. 2(b)), where the equivalent stiffness approaches
the stiffness of the stiffer spring as one spring becomes much
stiffer than the other. That is, ke = k1(1 + k2/k1) ≈ k1 when k1
>> k2. Hence, a beam response modeled with Branson’s
expression for Ie is pulled toward the uncracked Ig response
for beams with Ig/Icr greater than 3. This trend is clearly
demonstrated in Fig. 3. The proposed approach using Eq. (4),
on the other hand, represents a weighted average of two
springs in series (Fig. 2(a)), and the beam response with this
model is now pulled toward the cracked Icr response as Ig/Icr
increases (ke = k2/(1 + k2/k1) ≈ k2 when k1 >> k2). Other
factors such as the assumed value of modulus of rupture also
affect the beam response at lower reinforcement ratios.

COMPARISON WITH EXPERIMENTAL DATA
As noted previously, the comparisons reported by ACI

Committee 435 (1966) were restricted to beams with rein-
forcement ratios greater than 1%. A comparison with slab
tests reported by Gilbert (2006) is presented in Fig. 5. Simply
supported one way slabs of rectangular section with a thickness
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Fig. 2—Simple spring models.
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of 100 mm (4 in.) and span of 2 m (6 ft 7 in.) were subjected
to third-point loading. The results are quite conclusive in
showing that the original Branson formulation produces a
load-deflection response at service load levels that is too stiff
for steel reinforced members at low reinforcement ratios,
whereas the proposed formulation provides a better correlation
with the test results. Both formulations were satisfactory at
higher reinforcement ratios.

Fig. 3—Computed moment curvature response for: (a) ρ =
1.5%; (b) ρ = 1.0%; (c) ρ = 0.5%; and (d) ρ = 0.3%.

Fig. 4—Variation of Ig/Icr ratio with reinforcing ratio.

Fig. 5—Slab response for: (a) ρ = 0.52% and Ig/Icr = 6.3;
(b) ρ = 0.33% and Ig/Icr = 8.8; and (c) ρ = 0.20% and Ig/Icr
= 13.0 (after Gilbert 2006).

Figure 6 compares the two approaches for beams with a
0.31% reinforcing steel ratio and having a cross section 250 mm
(10 in.) wide by 300 mm (12 in.) high. The test response is
plotted for two identical beams with a simply supported span
of 3 m (9 ft 10 in.) and loaded at the third points. Branson’s
Eq. (1) provides a response that is too stiff, whereas Eq. (4)
slightly overestimates member deflection.
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APPLICATION TO BEAMS WITH
FRP REINFORCEMENT

A number of researchers (ACI Committee 440 2006) have
shown that Branson’s original formulation produces a
response that is overly stiff for beams reinforced with FRP
bars for which the modulus of elasticity is considerably
lower than for steel reinforcement. A modified form of
Branson’s equation has been recommended for FRP reinforced
members (ACI Committee 440 2006) as follows

(5)

where the correction factor βd = 0.2ρ/ρb ≤ 1.0 was empirically
derived using a statistical fit of available data. The term ρb is
the balanced reinforcing bar ratio.

A comparison between the ACI Committee 440 expression
in Eq. (5) and the proposed alternative expression with no
correction factors (Eq. (4)) is shown in Fig. 7 for beams
reinforced with glass FRP (GFRP) bars having an elastic
modulus Eb of 40 GPa (5800 ksi) and ultimate strength fu of
690 MPa (100 ksi). fc′ is taken as 27.6 MPa (4000 psi), and
results are normalized with respect to the cracking moment
Mcr and corresponding uncracked curvature. These plots
demonstrate that the proposed expression produces close
agreement with the ACI Committee 440 recommended
equation without the need to introduce correction factors for
FRP. Similar agreement is obtained for carbon FRP (CFRP)
reinforced beams. Once again, the reason that Branson’s
original expression under-predicts deflection is because the
Ig/Icr ratio for FRP beams is typically much greater than 3
(refer to Fig. 4).

While the ACI Committee 440 expression for Ie works
well for concrete reinforced with either GFRP or CFRP bars,
deflection is underestimated with aramid FRP (AFRP)
reinforcement (Bischoff 2007). Comparison with the
measured load-deflection response of an AFRP reinforced
concrete beam tested by Rashid et al. (2005) is presented in
Fig. 8, and clearly shows that Bischoff’s alternative expression
for Ie computes deflection reasonably well for beams with
this type of reinforcement. The beam evaluated had a simply
supported span of 2.4 m (7ft 10.5 in.), was loaded at the third
points, and had a rectangular 150 x 300 mm (6 x 12 in.) cross
section with a reinforcing ratio of 0.4%.
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DEFLECTION OF SLENDER WALLS
ACI 318-05 (ACI Committee 318 2005) includes an approach

for design of slender walls (Section 14.8) that takes account
of PΔ effects when computing the maximum service load
deflection Δs at mid-height of the wall. This is done by setting

(6)

to compute

(7)

where Msa is the maximum unfactored moment arising from
lateral loads and the effect of eccentric axial loads (not
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Fig. 6—Steel reinforcement beam response for ρ = 0.31%
(Ig/Icr = 8.2).

Fig. 7—GFRP beam response for: (a) ρ = 0.5% (Ig/Icr =
16.8); and (b) ρ = 1.5% (Ig/Icr = 6.3).

Fig. 8—AFRP beam response comparison (Ig/Icr = 25.2).
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including PΔ effects), Ps is the unfactored axial load at
midheight including the effects of self-weight, and lc represents
the vertical distance between simple supports. Ie is calculated
using Branson’s Eq. (1) taking the moment M from Eq. (6), and
iteration is required because Ie and M depend on one another. 

Slender walls with a central layer of reinforcement typically
have a gross reinforcing ratio (relative to the gross concrete
area) less than approximately 0.4%, and this results in a very
high Ig/Icr ratio between 15 to 30 because the effective
depth-to-height (d/h) ratio has dropped down to 0.5 (refer to
Fig. 4). Recall that d/h for beams and slabs typically varies
from 0.8 to 0.9. When using Branson’s equation for Ie, a high
Ig/Icr ratio leads to a very stiff response and subsequent
underestimation of member deflection as explained earlier.
Figure 9 compares computed deflections with the measured
response of full size wall tests carried out by a joint Southern
California Chapter ACI/Structural Engineers Association of

Southern California Task Committee on Slender Walls
(SCCACI-SEAOSC 1982). Comparison is made for 7.3 m
(24 ft) high tilt-up wall panels that had a thickness of 145 and
185 mm (5.75 and 7.25 in.), and corresponding slenderness
(lc/t) ratio of 50 and 40. The gross reinforcing ratio for the
two wall thicknesses was 0.28 and 0.23%, respectively.
Other wall thicknesses were also tested, and each wall was
subjected to a small eccentric axial load followed by a
uniform lateral pressure applied with an air bag.

Results for the 145 mm (Ig/Icr = 15) and 185 mm (Ig/Icr = 22.5)
thick walls are compared with the computed response using
both Branson’s equation for Ie and Bischoff’s alternative
approach. Calculations are based on the observed cracking
moment, and use actual dimensions and measured material
properties. The comparison is conclusive in demonstrating
the limitations of using Branson’s approach when the Ig/Icr
ratio of the member cross section exceeds 3, while the
approach proposed with Eq. (4) is clearly a suitable alternative.
The ACI approach using Branson’s expression predicts
service load deflections reasonably well for walls with a
double layer of reinforcement and subsequent higher reinforcing
ratios (SEAOSC 2005), as does the proposed approach.

DESIGN EXAMPLES
Design examples are worked out for 2 and 2.4 m (6.5 and

8 ft) long cantilevered slabs reinforced with either steel or
GFRP bars. The concrete is assumed to have a specified
compressive strength fc′ of 27.6 MPa (4000 psi). In addition
to their own self weight, each slab is subjected to an addi-
tional dead load of 0.48 kPa (10 psf), live load of 3.4 kPa
(70 psf), and permanent line load of 4.4 kN/m (300 plf) at
the end of the slab. This gives a ratio of unfactored dead-to-
live load moment at the base of the cantilever of approxi-
mately 3. Immediate (short-term) deflection is calculated
under full (dead plus live) service load. Long-term deflection
is not considered. Results of each design are shown in Fig. 10
and deflection values are summarized in Table 1. Specific
details of the slab calculations are provided in the Appendix.

Both of the steel reinforced cantilever slabs have a 200 mm
(8 in.) thickness based on the minimum thickness requirement
for the shorter 2 m (6.5 ft) slab. This slab just satisfies the
minimum thickness requirement of hmin = L/10 = 200 mm
(7.9 in.), whereas the longer 2.4 m (8 ft) slab would need a
thickness of 245 mm (9.6 in.) to satisfy the deflection control
requirement. The steel reinforced slabs are designed for
strength and are lightly reinforced with reinforcing ratios of
0.29 and 0.42% for the shorter and longer spans, respectively.
Not surprisingly, the shorter slab exhibits a much larger
span-to-deflection (L/Δ) ratio using either the Branson
expression or proposed alternative approach. Note, however,
that Branson’s equation under-predicts deflection in this
case by approximately 40% compared with the Bischoff
equation. For the longer 2.4 m (8 ft) slab, Branson’s equation
under-predicts deflection by approximately 30% and this
extra stiffness is sufficient to give an L/Δ ratio of approximately
275. Deflection values computed with the proposed alternative
equation give a lower L/Δ ratio of 200 and a slab that is less
likely to satisfy deflection limits. This demonstrates that
potential problems with deflection can arise when using
Branson’s value of Ie for lightly reinforced members. Other
factors such as the assumed value of the cracking moment
Mcr can also affect deflection calculations.

The thickness of the GFRP reinforced slabs was initially
based on the ACI Committee 440 (2006) recommendation

Fig. 9—Response for: (a) 145 mm (5.75 in.) thick wall (ρg =
0.28%); and (b) 185 mm (7.25 in.) thick wall (ρg = 0.23%).

Table 1—Summary of short-term deflections for 
cantilevered slab examples

Reinforcement Cantilever slab Approach

Full service load (D + L)

Δ, mm (in.) L/Δ

Steel

2 m (6.5 ft) span 
(ρ = 0.29%)

Branson
Bischoff

2.2 (0.09)
3.8 (0.15)

895
520

2.4 m (8 ft) span
(ρ = 0.42%)

Branson
Bischoff

8.8 (0.35)
12.2 (0.48)

275
200

GFRP

2 m (6.5 ft) span
(ρ = 0.5%)

Branson*

Bischoff
1.1 (0.043)†

1.1 (0.043)†
1810
1810

2.4 m (8 ft) span
(ρ = 0.5%)

Branson*

Bischoff
4.6 (0.18)

17.1 (0.673)
530
145

2.4 m (8 ft) span
(ρ = 1%)

Branson*

Bischoff
4.4 (0.173)
10.2 (0.40)

555
240

*Deflection calculations for GFRP slabs are based on Branson’s original Eq. (1).
†Deflection values based on gross (uncracked) moment of inertia.



73ACI Structural Journal/January-February 2007

for minimum thickness giving hmin = L/5.5 = 360 mm
(14.2 in.) for the shorter slab. This recommendation was much
too conservative and gave a slab with a cracking moment Mcr
that exceeded even the ultimate factored moment Mu. A
more reasonable thickness of 235 mm (9.25 in.) is used for
this example, giving a span-to-depth (L/h) ratio of 8.4 for the
shorter slab. Even at this thickness, the shorter slab does not
crack under full service load with Mcr = 30.1 kN-m/m
(6.8 in.-kip/in.) and Ma = 27.1 kN-m/m (6.1 in.-kip/in.).
Deflections based on the gross uncracked section easily
satisfy deflection criteria with L/Δ equal to 1800.

Serviceability often governs design with the lower stiffness
FRP bars (Bischoff 2005a), and an initial estimate of ρ = 0.5%
is used for the longer 2.4 m (8 ft) slab with the same thickness
of 235 mm (9.25 in.). This gives an over-reinforced beam with
ρ/ρb = 1.17 and Ig/Icr = 17.3. Branson’s equation only gives
approximately 1/4 of the expected deflection compared with
the proposed approach because of the high Ig/Icr ratio. This
results in a high L/Δ ratio greater than 500 because of the
unrealistically stiff response, whereas the L/Δ ratio is less
than 150 using the deflection value obtained with
Bischoff’s approach. Note that the calculated design
strength of 76.8 kN-m/m (17.3 in.-kip/in.) is more than
adequate to resist the factored ultimate moment of 50.2 kN-m/m
(11.3 in.-kip/in.). Creep rupture stress limits are also satisfied.
Increasing the reinforcing ratio to approximately 1% (ρ/ρb = 2.3)
has little effect on deflection values calculated with Branson’s
equation, but decreases deflection significantly using
Bischoff’s approach to give an L/Δ ratio of 240 for this partic-
ular example. It should be noted that in all examples, the slab
is assumed fixed at the support. In most design situations it
would be necessary to add the contribution of support rotation
to obtain the total deflection at the end of the cantilever span.

Whereas it is recognized that time-dependent deflection
caused by creep and shrinkage comprise a significant part of
the total deflection experienced by a reinforced concrete
flexure member, the intent herein is to highlight the differences
between the two approaches and demonstrate the relative
ease with which deflection can be calculated using the
proposed approach. Hence, only short-term deflections are
considered in the examples provided. Effects of long-term

behavior can be easily evaluated using the long-term multiplier
from the ACI 318 Code, and for a dead-to-live load ratio of
3:1 would give an additional long term deflection that is one-
and-a-half times the short-term value (assuming no sustained
live load and a worst case scenario using a deflection multiplier
of 2.0 for sustained loads of 5 years or more). The total
deflection occurring after attachment of the non-structural
elements would then equal 1.75 times the computed short-
term values for the examples considered in this paper. For
these calculations, it is assumed that both the dead and live
load deflection values are obtained with the same effective
moment of inertia under full dead plus live load. In other
words, the member has been previously loaded up to this
load level during construction.

CONCLUSIONS AND RECOMMENDATIONS
The adoption of Branson’s effective moment of inertia

expression in the 1971 and subsequent editions of the ACI
Code (ACI Committee 318 1971, 2005) was a significant
advance in recognizing the gradual transition from an
uncracked section to cracked transformed section response
with increasing load beyond the cracking load. This response
replaced the abrupt transition at ρ = 500/fy in psi (3.45/fy in
MPa) as previously assumed. Branson’s expression was
verified for steel reinforcement ratios greater than 1%, but
does not work well for lower steel reinforcement ratios nor
for beams reinforced with FRP bars. Service load deflections
are also underestimated for slender walls with a central layer
of reinforcement. In this paper, it has been demonstrated that
an alternative formulation of the effective moment of inertia
as given by Eq. 4(a) or (b) is applicable to steel reinforced
flexure members at all ranges of reinforcement ratio as well
as FRP beams without the need to apply correction factors.
It is recommended that the effective moment of inertia
expression given in ACI 318-05 (ACI Committee 318 2005)
be replaced with an equation of the form Ie = Icr/[1 –
η(Mcr /Ma)2] where η = 1 – Icr /Ig. This equation is simple
and as easy to use as Branson’s original expression for
control of deflection.

Fig. 10—Cantilever slab design examples. (Note: 1 mm = 0.04 in.; 1 m = 3.28 ft, 1 kN-m/m =
224.8 in.-lb/in., 1 kPa = 20.89 psf, and 1 kN/m = 68.5 plf).
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NOTATION
Ab = reinforcing bar area
b = beam or slab width
ccr = neutral axis depth for cracked section
d = effective depth of reinforcement
Eb = elastic modulus of reinforcing bar
Ec = elastic modulus of concrete
fb = bar stress
fc′ = specified compressive strength of concrete
fr = concrete rupture modulus
fu = ultimate (design) strength of FRP bar
fy = yield stress of reinforcing steel
h = beam height or slab thickness
hmin = minimum beam height or slab thickness for deflection control
I = moment of inertia
Icr = cracked transformed moment of inertia
Ie = effective moment of inertia
Ig = gross moment of inertia
k = spring stiffness (k1 or k2) used in spring models
kcr = normalized neutral axis depth (ccr/d) of cracked section
ke = equivalent spring stiffness for spring models
L = beam or slab span length
lc = vertical span for walls
M = moment (includes PΔ effects for slender walls)
Ma = applied service load moment
Mcr = cracking moment
MD = dead load moment
ML = live load moment
Mn = nominal moment capacity
Msa = maximum (unfactored) wall moment
Mu = factored moment
m = power coefficient in Eq. (4) set equal to 2
n = modular ratio (Eb/Ec)
P = axial load or moment used in spring model
P = applied beam load or axial wall load
PD = dead line load
Ps = axial load at mid-height of wall
Rn = nominal flexural resistance factor (Mn/bd2)
t = wall thickness
w = uniformly distributed load (wD and wL for dead and live loads,

respectively)
α1 = rectangular stress block factor for stress
β1 = rectangular stress block factor for depth of compression zone
βd = correction coefficient used in modified Branson expression (Eq. (5))
Δ = deflection
Δ = spring displacement or rotation used in spring model
Δs = wall deflection
εb = bar strain
εcu = ultimate compressive strain in concrete (3000 με)
η = stiffness reduction coefficient (1 – Icr/Ig)
φ = curvature
φ = strength reduction factor
φcr = uncracked curvature at Mcr
ρ = reinforcing ratio (Ab/bd)
ρb = balanced reinforcing ratio
ρg = gross reinforcing ratio (Ab/bh)
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APPENDIX
Design details of steel and FRP
reinforced concrete slabs

This appendix provides a detailed explanation of the
designs carried out for the cantilever slab examples. Design
requirements for steel reinforced concrete are based on ACI
318-05 (ACI Committee 318 2005), and requirements for the
FRP reinforced concrete follow the recommendations of
ACI 440.1R-06 (ACI Committee 440 2006). Whereas the
steel reinforced concrete slabs are under-reinforced to ensure
yielding of the steel before the concrete crushes, design of
the FRP slabs is based on an over-reinforced section using an
equation for bar stress fb based on flexure strength analysis
(see below). In this case, the concrete crushes before the
bar ruptures. The flexure capacity φMn for design is then
calculated using the flexure resistance equation for nominal
strength Mn = Rnbd2. Creep rupture of the glass FRP bars
under sustained loading is also considered by limiting the
bar stress under sustained service loads to 0.2fu. Other
requirements such as shear and bond strength are outside
the scope of this study. 

Normalweight concrete with a specified compressive
strength of fc′ = 27.6 MPa (4000 psi) is used with either
Grade 60 steel reinforcement having fy = 415 MPa (60 ksi)
and Eb = 200 GPa (29,000 ksi), or GFRP bars with a design
tensile strength fu = 690 MPa (100 ksi) and elastic bar
modulus Eb of 40 GPa (5800 ksi). Table 2 provides a detailed
summary of calculated values for each design example.

Concrete properties

Ec = 4730  and fr = 0.62  in MPa

Ec = 57,000  and fr = 7.5  in psi

fc′ fc′

fc′ fc′
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Stress block

α1 = 0.85 and β1 = 0.85 – 0.05( fc′ – 27.6)/6.9 ≥ 0.65
(in MPa) at εcu = 3000με

β1 = 0.85 – 0.05( fc′ – 4000)/1000 ≥ 0.65 (in psi)

Strength reduction factor for steel (ACI 318-05)

φ = 0.65 ≤ [3.95 – 2(ρ/ρb)]/3 ≤ 0.90

Strength reduction factor for GFRP (ACI 440.1R-06)

φ = 0.55 ≤ 0.3 + 0.25(ρ/ρb)] ≤ 0.65

Flexural strength analysis

φMn ≥ Mu = 1.2MD + 1.6ML

• Reinforcing bar ratio

ρ = Ab/bd

• Balanced reinforcement ratio

(note that fu is replaced by fy for steel).
• Bar stress

• Nominal flexural resistance factor

Serviceability analysis

• Cracked section properties

Icr/bd3 = kcr
3/3 + nρ(1 – kcr)

2

with

Deflection calculations under full (dead + live) service load:

ρb α1β1
fc′
fu

-----
εcuEb

εcuEb fu+
-----------------------=

fb 0.5Ebεcu 1 4α1β1fc′ ρEbεcu( )⁄+ 1–[ ] fu or fy≤=

Rn
Mn

bd2
-------- ρfb 1 ρfb 2α1fc′( )⁄–[ ]= =

fb n
Ma

bd2
--------

1 kcr–( )

kcr
3 3 nρ 1 kcr–( )2+⁄( )

-------------------------------------------------------
Ma

ρbd2 1 kcr 3⁄–( )
----------------------------------------= =

ccr kcrd kcr, nρ( )2 2nρ+ nρ and n– Eb Ec⁄= = =

• Distributed loads

Δ = wL4/8EcIe = ML2/4EcIe

• Concentrated end load

Δ = PL3/3EcIe = ML2/3EcIe

Table 2—Cantilever slab design details
Steel reinforced slab GFRP reinforced slab

2 m
cantilever

2.4 m
cantilever

2 m
cantilever

2.4 m
cantilever

L: m (ft) 1981 (6.5) 2438 (8) 1981 (6.5) 2438 (8)

hmin = L/10* or

L/5.5†
198 (7.8) 244 (9.6) 360 (14.2) 443 (17.5)

h: mm (in.) 203 (8) 203 (8) 235 (9.25) 235 (9.25)

d: mm (in.) 178 (7) 178 (7) 210 (8.25) 210 (8.25)

Mcr: kN-m/m (k-ft/ft) 22.5 (5.1) 22.5 (5.1) 30.1 (6.8) 30.1 (6.8)

Ma: kN-m/m
(k-ft/ft)

25.6 (5.8) 36.3 (8.2) 27.1 (6.1) 38.5 (8.7)

Mu: kN-m/m 
(k-ft/ft)

33.3 (7.5) 47.5 (10.7) 35.1 (7.9) 50.2 (11.3)

Ma/Mcr 1.14 1.61 0.9 1.28

ρ 0.29% 0.42% 0.5% 0.5%‡

Ab

No. 4 at
245 mm
(9.6 in.)

No. 4 at
170 mm
(6.7 in.)

No. 4 at
121 mm
(4.75 in.)

No. 4 at
121 mm 
(4.75 in.)

ρ/ρb 0.10 0.15 1.17 1.17

φ 0.9 0.9 0.59 0.59

Mn: kN-m/m (k-ft/ft) 37.0 (8.3) 52.8 (11.9) 129.8 (29.2) 129.8 (29.2)

φMn: kN-m/m (k-ft/ft) 33.3 (7.5) 47.5 (10.7) 76.8 (17.3) 76.8 (17.3)§

Ma/Mn 0.69 0.69 0.21 0.30

fb@Ma
: MPa (ksi) 298 (43.2) 296 (43.0) — 183 (26.5)

εb@Ma
: με 1489 1482 — 4568

Ig: mm4/m (in.4/ft) 6.99 × 108 
(512)

6.99 × 108 
(512)

10.81 × 108 
(791.5)

10.81 × 108 
(791.5)

Icr: mm4/m (in.4/ft) 0.99 × 108 
(72.55)

1.35 × 108 
(99.0)

0.63 × 108 
(45.9)

0.63 × 108 
(45.9)

Ig/Icr 7.1 5.2 17.3 17.3

Service load behavior Cracked Cracked Uncracked Cracked

Ie,Branson: mm4/m 

(in.4/ft)
5.08 × 108 

(371.6)
2.70 × 108 

(197.5)
10.81 × 108 

(791.5)
5.49 × 108 

(401.2)

Ie,Bischoff: mm4/m 

(in.4/ft)
2.95 × 108 

(215.9)
1.96 × 108 

(143.5)
10.81 × 108 

(791.5)
1.47 × 108 

(107.8)

ΔBranson: mm (in.) 2.2 (.087) 8.8 (.348) 1.1 (.043) 4.6 (.181)

(L/Δ)Branson 895 276 1811 532

ΔBischoff: mm (in.) 3.8 (.150) 12.2 (.479) 1.1 (.043) 17.1 (.673)

(L/Δ)Bischoff 521 201 1811 143
*Minimum thickness requirement for steel reinforced concrete cantilever slab
(ACI 318-05).
†Minimum thickness requirement for FRP reinforced concrete cantilever slab
(ACI 440.1R-06).
‡For ρ = 0.95% or No. 4 at 63.5 mm (2.5 in.): φMn = 110 kN-m/m (24.7 k-ft/ft);
Ma/Mn = 0.23; fb@Ma

 = 98 MPa (14.2 ksi) with bar strain of 2440 με; fb,sus = 72.3 MPa

(10.5 ksi); Ig/Icr = 9.7; ΔBranson = 4.4 mm (0.173 in.); ΔBischoff = 10.2 mm (0.401 in.);
and L/ΔBischoff = 240.
§Bar stress for sustained loading, fb,sus = 135 MPa (19.6 ksi) ≤ 0.2fu = 138 MPa (20 ksi).


