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Design rules are described for determining the lateral distribution of 
concentrated vertical loads in decks made from precast concrete 
members. The rules are derived from the results of an analytical pa
rameter study, and design examples show how to use them. These 
new rules are put forward for possible inclusion in Chapter 16 of ACI 
318. 
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Precast concrete decks, particularly those made from 
hollow-core units, are widely used for roofs and floors. 
Design of individual members within the deck is rela
tively straightforward when the load is uniformly dis
tributed, and design aids are available both from man
ufacturers and in the PC/ Design Handbook . 1 How
ever, when point, line, or patch loads are applied, the 
extent to which individual members share in carrying 
them is less obvious. (A patch load is a uniform load 
applied over a limited area.) This paper concerns the 
development of simple analytical procedures for deter
mining such interaction. The methods proposed are de
rived from the results of an extensive study2 using both 
analytical and experimental methods. The analysis was 
based on the assumption of linear elastic behavior. 

The behavior of thin plates in the linear elastic range 
is well understood. 3 However, the behavior of hollow
core decks is complicated by the lack of full-moment 
continuity at the longitudinal joints between members, 
by their slightly different flexural stiffnesses in the two 
orthogonal directions, and by the deflections due to 
distortions of the individual cells. 

Several studies have addressed the problem of analy
sis. Many-4-6 have used orthotropic plate theory, 3 often 
modeling the assumed hinges between members by as
signing zero transverse bending stiffness to the plate 
(articulated plate theory), whereas others have treated 
the members as separate line elements7

•
8 connected into 

a gridwork. The field of bridge engineering has pro
vided a wealth of data, well summarized in Reference 
9, but most of it concerns determination of response to 
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nominal truck loading rather than to an arbitrarily 
placed point load. Tests2

•
4

•
6

•
10

•
12 have demonstrated that 

considerable load-sharing can be achieved, leading to 
significant economies if taken into account. 

ANALYTICAL MODEL 
Some transverse moment can be carried across the 

grout joint between members, particularly in wide 
decks in which the members are prevented to some ex
tent from moving apart by friction forces at the sup
ports. A poured-in-place structural topping or trans
verse ties provide similar restraint. However, the extent 
of this partial moment continuity is uncertain, and al
though empirical efforts have been made to quantify 
it, 4 it is ignored here in the interests of simplicity and 
safety. 

The present analysis was performed using the finite 
strip method. 13 Each member was modeled as a plate 
made up from a number of interconnected strips, and 
the plates were connected together by rotational hinges 
with full-shear continuity. 14 The ends were simply sup
ported, and the lateral edges were free. This modeling 
is an improvement over the orthotropic plate theory 
because the hinges are represented discretely rather than 
being smeared over the members, making it possible to 
distinguish between the responses of decks made from 
wide and narrow planks. 

Shear flexibility of the plates was introduced in the 
transverse direction to describe approximately the de
formations due to cell distortion. In the finite strip 
method, this can be achieved without great difficulty, 
requiring the addition of one degree of freedom per 
strip. This can be condensed out subsequently if de
sired at the expense of only minor restrictions on load 
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placement. The introduction of shear flexibility into 
orthotropic plate theory complicates the calculations 
significantly, and in the special case of articulated plate 
theory (the usual choice), it is impossible. 

In any method based on Fourier series, the accuracy 
depends on the number of terms used. Convergence is 
fastest for deflection, followed by moments (flexural 
and torsional), and is slowest for shear. The inclusion 
of shear flexibility slows convergence and requires more 
strips per plank. More terms are needed for loads or 
responses that are near the supports or are close to
gether. Thus shear response near the support when the 
load is nearby usually gives the critical condition. One 
hundred terms were used for the analyses, and critical 
results were found to differ by less than 5 percent when 
compared with calculations using 500 terms. 

The design procedures were developed from analyses 
of a particular deck, chosen both to represent practical 
conditions and to possess properties that would lead to 
design rules safe for other decks of common geome
tries. Properties were selected in light of results from a 
wider parameter study,2 in which many different deck 
geometries and member properties were investigated 
after first verifying the analytical model against experi
mental evidence. The deck that was used as a standard 
was 48 ft (4.5 m) square, made of 12 in. (0.305 m) deep 
by 4 ft (1.2 m) wide planks with four 10 in. (254 mm) 
diameter circular voids. 

It can be shown2 that the maximum moment per unit 
width in a deck is a function of Jl7], where I and J are 
the flexural and torsional stiffnesses of the members. 
Fortunately Jl7] varies only slightly with plank depth
to-width ratio and with void size, shape and spacing, al
lowing the use of one set of member properties to rep
resent all plank types and a concomitant reduction in 
the number of parameters to be considered in the sim
plified design rules. The error introduced is small com
pared to those caused by disregarding many other ef
fects and, furthermore, an accurate calculation of J re
quires a special finite element that is unlikely to be 
readily available to designers or manufacturers. 

By contrast, the transverse shear flexibility of the 
member is strongly influenced by the void shape. Rect
angular voids undergo relatively large cell distortions 
(similar to the deformations of a Vierendeel girder) 
compared to those of roughly circular voids, 15 and the 
result is a greater concentration of response under the 
load. Thus the design rules proposed here apply only to 
planks with voids that are roughly circular or are 
shaped to cause less shear distortion (e.g., tall narrow 
voids). 

Patch loads were used in all cases. The use of a true 
point load in plate theory leads to finite deflections but 
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locally infinite moments and shears at the load. This is 
a feature of thin plate theory and is not peculiar to the 
finite strip method of analysis. Using a patch load (i.e., 
a uniform load applied over a small area) resolves the 
problem. Dimensions of the load footprint were chosen 
to be 0.02£ wide by 0.03£ long. These dimensions re
flect the approximate dimensions of the region over 
which the load will be spread at middepth of the mem
ber and the fact that the spreading effects of the webs 
exist in one direction only. The 0.02£ width is close to 
the member depth and the void spacing in the chosen 
deck, so it essentially places all of the load over one 
web. This is believed to be a reasonable procedure in 
view of the fact that the local complex geometry around 
the void, including the out-of-plane bending of the thin 
material above and below the voids, is modeled in the 
analysis by smearing out the properties into an equiva
lent plate. While this gives reasonable results at some 
distance from the load, the less representative modeling 
close to it demands that the loading be chosen so as not 
to be unsafe. The 0.03£ length reflects a real load about 
4 in. (102 mm) long on the surface, spreading out at 
45 deg through the thickness of the deck to give ap
proximately a 0.03£ loaded length at the mid-depth of 
the member. 

DEVELOPMENT OF DESIGN PROCEDURES 
Results of the analyses are conveniently expressed in 

terms of distribution widths. The total response to the 
given load is calculated and is then distributed laterally 
over a nominal distribution width. The members fall
ing within that width are then designed to resist that 
part of the distributed response that is tributary to 
them. 

In previous uses of the concept, variation across the 
distribution width of either load or response has been 
treated as uniform. This has drawbacks. First, it might 
lead to the erroneous impression that the response 
really is distributed that way. Fig. 1 shows the varia
tion of moment per unit width at midspan across the 
standard dec\< when a concentrated load is placed in the 
middle. It is clearly far from being uniform, but is 
more nearly described by a decaying exponential. A 
second problem arises with the common choice of an 
assumed rectangular variation in decks where the dis
tribution width is about three planks wide. If two con
centrated loads are placed with one unloaded plank be
tween them, the assumption of a rectangular variation 
would lead to the unrealistic conclusion that the nomi
nally unloaded plank would have to be designed to re
sist twice the moment in a loaded plank. Superposition 
of two of the true diagrams confirms what might be 
expected; namely, that the most intense response oc
curs in the loaded planks. 

A better representation can be obtained by treating 
the response as if it were distributed in a triangular 
fashion across the deck. The distribution width must 
then be twice that used in the rectangular diagram so 
that a given concentrated load will still lead to the same 
maximum response per unit width. The triangular dia-
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Fig. I - Lateral variation of unit longitudinal bending moment 

gram alleviates the artificial problems caused by over
lapping of the distribution widths of two adjacent 
loads. It also resembles more closely the true shape, 
and so is adopted here. 

A second aspect of the problem is that the load, 
rather than the response, has traditionally been spread 
over the distribution width, leading unavoidably to the 
same distribution width for all response types (mo
ment, shear, etc.). Inspection of the plate equations3 

shows that those response quantities for which the so
lution converges fastest are also spread out the most 
widely. Thus shear is the most concentrated and deflec
tion is the most uniformly distributed response. This 
can be seen in Fig. 2, which shows lateral variation of 
deflection, longitudinal moment, and longitudinal 
shear. Each is nondimensionalized by dividing through 
by the maximum value of that particular response 
quantity. Because deflection readings are the easiest to 
obtain, test programs have tended to rely heavily on 
them in deriving estimates of response. Fig. 2 shows 
that a design for shear based on distribution factors 
derived from deflection data could be significantly un
safe. Separate expressions for each response type are 
used here. 

It was also found that the maximum response inten
sity reduced (and so the distribution width increased) 
when the longitudinal distance between the load and 
response points was greater. The expression for the 
prescribed distribution width becomes slightly more 
complicated if this effect is included, but the penalty 
for ignoring it (a factor of 2 to 3 in flexure and much 
more in shear) is very large. For moment, and to a 
lesser extent for shear, the distribution width is also a 
function of the response location along the span. 

For moment, both effects can be accounted for by 
defining the basic distribution width as 
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Fig. 2 - Latertil variation of dimensionless unit re
sponse 

where 

~LR ,;; 1/12 

1.375 + 1.5~LR 
I~L - ~RI 

~LR > 1/12 

(1) 

(2a) 

(2b) 

~ xlf and subscripts L and R refer to load and re
sponse 

x longitudinal distance from one end of the span 

Eq. (1) was obtained by fitting a parabola through 
the computer-generated results. In the common case in 
which load and response coincide, the coefficient C1 is 
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equal to 1.0. Further, if they are both at midspan, the 
distribution width is 0. 70f (this corresponds to a width 
of 0.35f if the variation across the deck is assumed to 
be rectangular rather than triangular). That the distri
bution width should be a linear function of e can be 
demonstrated theoretically2 using orthotropic plate the
ory. This is true for moment and deflection but not for 
shear. 

The predictions of these equations are compared with 
the true distribution widths in Fig. 3 and 4, and the 
agreement can be seen to be good. They err on the side 
of conservatism at large separations of load and re
sponse locations, but this is not a serious penalty be
cause such load cases are unlikely to prove critical. 
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In the interior of the deck the moments are highest 
when the load is applied at a joint. For a very wide 
deck in which the joints act like hinges, symmetry dic
tates that the response will double if the load is placed 
at the very edge of the deck instead of at an interior 
joint. For loads placed near the edge but not at it, the 
response will increase to some intermediate value. It is 
conceptually convenient to assume that the interior re
sponse value is valid for all load locations for which the 
assumed triangular distribution width lies entirely 
within the confines of the deck. A simple rule for deal
ing with the case where the distribution width partially 
overhangs the edge is to disregard the overhanging part 
of the response and to increase the intensity of the re-
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tained (i.e., the area under the diagram remains the 2.oo.--------------------, 

same). This is illustrated in Fig. 5 and is achieved by 
multiplying the ordinates by a factor 

Ce = 1/[1 - 0.5(1 - 2e/B)2
] (3a) 

if the edge distance is less than B/2 on one side only, 
and 

Ce = 11{1 - 0.5 [(I - 2e/B)2 (3b) 
+ (1 - 2e21 B)2l} 

if it is on both sides (i.e., the deck is narrower than the 
distribution width B). Here e1 and e2 are distances from 
the center of the load to the free edges of the deck, and 
B is the basic distribution width derived for the interior 
of the deck. The subscript to B is omitted here because 
Eq. (3a) and (3b) are later used for deflection and. shear 
response as well. 

The results of this approximation are shown in di
mensionless form in Fig. 6, and they can be seen to give 
reasonable agreement with the true values. For the 
small region in which they are unconservative, the er
ror is on the order of 2 percent. 

Displacement response is somewhat simpler to eval
uate. Using the same standard deck as for moments, 
and approximating the response as triangularly distrib
uted across the deck, the basic distribution width Bd for 
midspan load and response is 1.25£. For a load at 
quarter-span, the basic distribution width was found to 
be 1.12£ and 1.37e for response at quarter-span and 
midspan, respectively. The dependence on response 
location and separation between load and response is 
thus slight, and the use of 1.25£ is recommended for all 
interior cases. It will underpredict deflections for coin
cident load and response when they are not at mid
span, but by an amount that is probably less than that 
caused by other uncertainties. Furthermore deflections 
at locations other than midspan are seldom calculated 
or important. Thus 
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Fig. 7- Edge coefficient CJor midspan deflection 

Bd = 1.25£ (4) 

Application of the concept of a distribution width to 
a deflection calculation is less intuitively obvious than 
for a moment calculation. One simple way is to calcu
late the deflection of one isolated member subjected to 
a concentrated load equal to 2b/ Bd times the real value, 
where b is the member width. This is then the maxi
mum deflection under the real load in the real deck, 
and deflections in the adjacent members can be calcu
lated on the basis of the triangular variation across the 
distribution width. 

Eq. (3a) and (3b) may be used to correct for cases 
where the basic distribution width overhangs the edge 
of the deck. (These will be quite common, at least in
volving all decks narrower than 1.25£) Fig. 7 shows that 
they give a reasonable and slightly conservative result in 
all cases. 

Shear is perhaps the most complex response. This is 
partly because the ACI Building Code16 advocates eval
uation of shear effects using forces rather than stresses, 
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so that any response quantity such as torsion that 
causes shear stress needs to be turned into an equiva
lent shear. Torsion in reinforced concrete is often ig
nored if it arises from compatibility rather than equi
librium requirements and if the system is reasonably 
ductile. Hollow-core planks seldom contain shear rein
forcement, so their shear ductility is limited and the in
clusion of all effects causing shear stress is important. 
Even if the exact distribution of all shear stresses in the 
members was known, the question of evaluating the 
member's resistance to them is still not well resolved. 
However, it is a behavioral question that lies outside 
the scope of this study. 

Questions of accuracy and interpretation also arise 
even in the elastic analysis for shear. Convergence of 
the Fourier series is slower for shear than any other 
quantity, particularly if the load and response are close 
together. The use of thin plate theory, on which the fi
nite strip program used here was based, also poses its 
own problems of interpretation of shear results close to 
the load. The use of patch loads rather than true point 
loads is helpful in both cases. 

In all cases, shear response was obtained at least 
0.025£ from the center of the load. This corre
sponds approximately to the response being evaluated 
at a distance from the end of the load equal to the 
member depth. This is illustrated in Fig. 8, which is 
based on a span-to-depth ratio of 50. For deeper mem
bers this is closer than considered necessary by the ACI 
Building Code and leads to conservative estimates of 
imposed shear stress. 

Fig. 9 shows calculated distribution widths for shear 
(ignoring torsion). The abscissa is the response loca
tion, and each curve shows the result for a different 
distance between load and response. It can be seen that 
the results are much more dependent on the separation 
between load and response than on the response loca
tion. For a given separation, the distribution width gen
erally increases for response locations nearer the sup
port. The local reduction right at the support is be
lieved to be caused by slow convergence of the Fourier 
series, although a check using 500 rather than the stan
dard 100 terms showed only a 3.5 percent change. The 
values obtained for response at midspan and at the 
support were nearly the same, so B,. was chosen to be 
independent of the response location. 

Fig. 10 shows the variation of the distribution width 
with separation between load and response. A lower 
bound to these results is given by 

B,. = 6.67 S but not less than 0.125£ (5) 

where S is the distance from the face of the load to the 
point at which the shear is being evaluated. B,. is then 
taken as the basic distribution width, and the maxi
mum shear force per unit width Q,. is given by 

Q, = 2V/B,. (6) 

where V is the total shear force at the reponse point. 
Eq. (3a) and (3b) were once again found to describe 
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adequately the correction for loads placed near the edge 
of the deck, as shown in Fig. II. 

Shear forces cause the maximum shear flow at the 
neutral axis, which is probably close to middepth 
where the webs are thinnest, so on both counts that lo
cation leads to the highest shear stress. It is given ap
proximately by 

7 = V/hf.t (7) 

where V1 is the shear force applied to one member and 
f.t is the sum of all the web widths in the member. 

Torsion causes shear stresses in the member webs, 
which may add to those caused by shear forces. They 
may be calculated by ignoring the inner webs. (This is 
conservative for members with four or more webs, but 
not very much since the inner webs have lower shear 
stresses and shorter lever arms and therefore carry a 
relatively small proportion of the total torque.) The 
torsional shear stress at any point around the perimeter 
is then given by 

7 = T/2At (8) 

where 

T torque 
A area enclosed by a line drawn along the mid

thickness of the flanges and outer webs 
t thickness of web or flange at the point of inter

est 
The flanges of hollow-core planks are often thinner 

than the outer webs, so the maximum torsional shear 
stresses will occur over (or under) the innermost void. 
However, it is assumed that the latter will be exceeded 
by the combination of shear and torsional shear stresses 
in the outer web, which will therefore control the shear 
design. Assuming for a typical section 
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Fig. 11 - Edge coefficient CJor longitudinal shear 

A = (0.95b) X (0.85h) = 0.8 bh (9) 

then 

7 = T/1.6bht (10) 

However 

(11) 

where mxy = torsional moment per unit width and the 
maximum mxy was found to be closely approximated by 
0.22V, so 

7::::: V/7.5 ht (12) 

The shear force per unit width that would lead to the 
same shear stress in the outer web is hf.tlb times this 
value. Thus the effects of the torque could be replaced 
by a shear force per unit width Q1 which causes the 
same maximum shear stress 

(13a) 

where ! 1 is the thickness of the outer web. A similar 
calculation for solid slabs yields 

Q1 = 2 V/[h (6- 3hl b)] (13b) 

The torsion response differs from the others in that 
the total of all the resisting torsional couples is not a 
statically determinate quantity as is the case for mo
ment and shear. In those cases a knowledge of the total 
static response and the maximum response per unit 
width leads to the definition of the distribution width. 
A distribution width for torsion B1 is still needed for use 
in Eq. (3a) and (3b) to account for the larger values en-
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countered near an edge. Fig. 12 shows the lateral vari
ation of mxy for various load locations, and the in
crease in mxy.max near the deck edge is clear. (The figure 
also shows that mxy is nearly constant across any one 
member but is discontinuous across a joint.) A distri
bution width was derived by fitting Eq. (3a) to the 
mxy.max values. A perfect fit was not possible at all 
points, but taking B, equal to 1.04£ gave a good match 
nearest the edge. It was rounded to 1.0£ and is shown 
in dimensionless form in Fig. 13. 

The combined effects of shear and torsion may be 
calculated by 

Qeq Q,. + Q, 

378 

where Q,. and Q, are as defined in Eq. (6) and (13), each 
modified by the appropriate edge correction factor ce. 
For typical situations in which the shear is evaluated 
one member depth from the face of the load, Q, was 
found to be on the order of one half of Q,. . 

In the interior of the deck the outer web of each 
member will adjoin a grout key. For the grout key to 
work compositely with the web, it must be full and the 
interface must be sufficiently rough that shear stresses 
can be transferred across it without any slip. These 
conditions depend on very high standards of workman
ship, so it would be prudent to ignore the thickness of 
the grout key when computing that of the outer web in 
calculations for shear and torsion. 

The foregoing concepts are presented as design rules, 
expressed in language suitable for consideration for in
clusion in a code or design handbook. A brief com
mentary accompanies them. 

PROPOSED DESIGN RULES AND COMMENTARY 
Design rules 

I. In lieu of a rational analysis, response to concentrated forces 
perpendicular to the plane of the members may be determined in ac
cordance with the procedures of following Paragraphs 2 through 7, 
for slabs that are solid or hollow core with approximately circular 
voids, have a span-to-depth ratio of 10 or greater and have no open
ings in the distribution width. 

2. The total shear or bending response in any member shall be 
computed as the member width multiplied by the maximum response 
per unit width in that member. 

3. The response per unit width shall be computed by adding the in
dividual responses per unit width caused by the different loads. Re
sponse to a line load may be treated by considering it as a series of 
point loads. The effects of shear and torsion shall be combined and 
treated as an equivalent shear in accordance with the procedure of 
Paragraph No. 5. 

ACI Structural Journal I September-October 1987 



4. Basic distribution widths B", Bm, and B,. for deflection, bending 
moment, and shear shall be computed as 

B,, = 1.25 f 
Bm = C,£ (0.14+2.25~R(1-~R}] 
B,. 6.67 S but not less than 0.125 f 
B, = f 

where 

c, = I + 6~,R if ~LR .;;;; 1112 
c, = 1.375 + l.5~LR if ~LR > 1112 

~" = ~~' - ~R~ 
~' distance of load from one support divided by span length 
~" distance of response from the same support divided by span 

length 
f span length 
S the distance between the face of the load and the section at 

which the shear is being calculated 

5. If the center of the concentrated load is further than one half of 
the appropriate basic distribution width from the nearest free edge, 
the distribution of that response shall be taken as triangular, with the 
apex of the triangle at the load and extending half a distribution 
width each side. The maximum response per unit width shall be given 
by 2M/Bm for moment and 2V( liB,. + ElI 15 b I,) for shear, ex
cept that the expression El/(15bl,) shall be replaced by 1/[h(6- 3h/ 
b)] for solid slabs. The maximum deflection shall be computed as that 
caused by a concentrated load 2b!B, times the true value applied to 
an isolated member. In the foregoing 

M = total static moment at the response location caused by the 
concentrated load 

V total static shear at the response location caused by the con-
centrated load 

b member width 
El = sum of all web widths in one member 
1, = width of outermost web 

6. If the center of the concentrated load is located a distance e from 
a free edge, where e is less than one-half of the basic distribution 
width for that response type, then the triangular diagram prescribed 
in Paragraph 5 shall be truncated at the free edge and the intensity of 
the remainder of the diagram shall be divided by [I - 0.5(1 - 2e/ B)'] 
if e < B/2 on one side only, and by { 1- 0.5[(1- 2e,/ B)'+ (1- 2e,l 
B)']} if e < B/2 on both sides. 

Here e, e, and e, are distances from the center of the ·load to the 
free edges of the deck and B is the basic distribution width for that 
response type. 

7. The basic distribution widths for deflection and bending mo
ment, B, and Bm, may be increased by 10 percent if the deck width is 
greater than twice the span. For deck widths between f and 2f the in
crease may be calculated using linear interpolation. 

Commentary 
Precast concrete decks have uncertain transverse moment continu

ity at the joints between members, so safe design requires that the 
joints be treated as hinges. The structural action is relatively complex 
because of this articulation. 

Studies' have shown that in any deck subject to concentrated load, 
deflections are more uniformly distributed than moments, which are 
more uniformly distributed than shears. However, for shear and 
bending the distribution width increases significantly when response 
is considered at some longitudinal distance from the load. This is re
flected in the equations for distribution widths. 

If a concentrated load is applied at a joint between members, 
twisting occurs, inducing torsional shear stresses. For simplicity of 
calculation, these are converted to an equivalent unit shear compo
nent that is to be added to the true unit shear. They must be calcu
lated separately and then added because the shear distribution width 
is directly proportional to the distance between load and response, 
whereas the torsional response is essentially independent of it. 
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The use of an assumed triangular transverse variation of response 
instead of the traditional rectangular one represents more closely the 
true shape and avoids the artificial problems that arise when two 
loads are placed on alternate members and their distribution widths 
overlap on the unloaded member between. However, for a single 
concentrated load, the maximum unit response is the same for both 
shapes. 

The simplified rules presented here may be unsafe in cases where 
the transverse shearing deformations (caused by cell distorsions) be
come significant. The limitations on span/depth and void shape pre
vent their use in such cases. 

The correction factors of Paragraph 6 are approximate and are 
based on the requirement that the area under the unit response dia
gram must always be equal to the total response. 

DESIGN EXAMPLES 
Example 1 (General) 

A 12-in. hollow-core floor is shown in Fig. 14. Find 
the contribution of the concentrated load to the mo
ment under the center of the load, the shear 12 in. from 
the face of the load and the midspan deflection. 30 kip 
service load. Appropriate load factors for strength de
sign to be applied separately. 

Moment at 14ft from support: 
~LR = 0 
cl = 1.0 
~R = 14/42 = 0.333 
Deck width/length = 60142 = 1.428 
Wide deck correction = ( 1.428 - 1) x 0.1 + 

1 = 1.0428 
Bm = 1.0 X 1.0428 X (0.14 + 2.25 X 0.333 X 

0.667) X 42 ft = 28.0 ft 
M = 30 kip X 14 X 28/42 = 280ft-kips 
mmax = 2M/Bm = 2 X 280/28 = 20 ft-kips/ft 
Moment per plank = 4 ft x 20 ft-kips/ft = 80 ft-

kips 

Shear 12 in. from face of load: 
B,. 0.125 f = .S.25 ft 
V = 2/3 x 30..kips = 20 kips 
Q,. = 2V/B,. = 2 X 20/5.25 = 7.619 kips/ft 

l loooon~ 
4'·0" 

Fig. 14 - Deck for Example 1 
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Fig. 15- Deck for Example 2 

Q1 = 2VI:t/(l5bt1) = 40 X 8/(15 X 4 X 1.75) = 

3.048 kips/ft 
Qeq = Q,. + Q1 = 7.619 + 3.048 = 10.667 kips/ft 
Shear per plank = b Qeq = 4 X 10.667 = 42.666 

kips 
(This is larger than the load, indicating that the shear is 
distributed locally over less than one plank width.) 

Midspan deflection: 

23 Pf3 
• 

For an isolated beam D. = 
1296 

EI = 2.272 m. 

Bd = 1.25 f = 52.5 ft < 60 ft, so no edge correc
tion needed 

Do = 2.272 X 2 X 4 ft/52.5 ft = 0.35 in. 

Example 2 (Edge loads and combined loading) 
Eight in. hollow-core floor as shown in Fig. 15. Find 

the (unfactored) shear per plank 8 in. from the face of 
load No I 

e, = 4 in. e2 = 236 in. 

For load No. I: 
Shear: S = 8 in., V = 6.67 kip 
B,. = 6.67 S = 6.67 X 8 = 53.3 in. 
Ce = II[ I- 0.5(1- 2e/B,Y] = 1/[I- 0.5(1- 8/ 

53.3)2] = 1.565 
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Q,. = Ce2VIB,. = 1.565 X 2 X 6.67/53.3 0.39I 
kips/in. 

Torsion: B1 = f = 360 in. 
C" = 1/[I- 0.5(1- 2e/BYJ = I e [1- 0.5(1- 8/ 

360)2
] = 1.916 

Q1 = Ce 2VI:t/I5bt1 = 1.916 X 2 X 6.67 X 16/(15 
x 40 x 2) = 0.340 kips/in. 

Qeq = Q,. + Q1 = 0.391 + 0.340 = 0.73I kips/in . 

For load No. 2: 
Shear: S = 252 in., V = 1.33 kips 
B, = I680 in. 
C" = 11{1-0.5[(1-2e/BY + (l-2e2/B,YJ} = 11 

{I-0.5[(1-8/1680)2 + (1-23611680)21} = 7.387 
Q,. = Ce 2VIB,. = 7.387 X 2 X 1.33/1680 = O.OI2 

kips/in. 
Torsion: B1 = e = 360 in. 
C" = I/{l-0.5[(1-2e/B,Y + (l-2e2/B,Y]} 

1.916 
Qr = C" 2VI:t/I5bt1 = 1.916 X 2 X 1.33 X 16/(15 

X 40 x 2) = 0.068 kips/in. 
Qeq = Q,. + Q1 = 0.012 + 0.068 = 0.080 kips/in. 

For both loads combined: 
Qeq = 0.731 + 0.080 = 0.811 kips/in. 
Shear per plank = b Qeq = 40 X 0.811 = 32.5 kips 

Example 3 (Line loads) 
Same deck as Example I, but loading is a I kip/ft 

line load 42 ft long in the span direction in the middle 
of the deck. Find the midspan (unfactored) moment 
for which the most heavily loaded plank must be de
signed. 

Simulate the line load with eight concentrated loads 
of 5.25 kips each, the first placed £/16 from the sup
port. The mx values for half of the loads are obtained 
in the table below; the others can be obtained using 
symmetry. For a typical load at h 

But 

M(£12) = 0.5 X ~L X 5.25 X £ 

mx = 2M/ B, = 5.25 X ~L I(Bmle) 

16~, 16~,. c, Bm/f mx 

I 7 2.031 1.427 0.230 
3 5 1.844 1.295 0.760 
5 3 1.656 1.163 1.411 
7 I 1.375 0.966 2.378 

4.779 

mx = 2 X 4.779 = 9.557 ft-kips/ft 

moment per plank = bmx = 4 X 9.557 
= 38.23 ft-kips 

M(£12) = w£2/8 = 220.5 ft-kips 

So the average distribution width (based on triangular 
moment variation) is 
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Ba,· = 2 X 220.5/9.557 = 46.144 ft = 1.10 f 

This is 56 percent larger than the value for a single 
concentrated load at midspan. 

Example 4 (Loads in different locations) 
Deck as shown in Fig. 16. Find the midspan mo

ment for each plank in terms of P. 

For each load: 
~L = 0.4167 
~R = 0.5 
~LR = 0.0833 
el = 20ft 
e2 = 28 ft 
M(f/2) = 48 ft X 0.4167 X (l- 0.5) P 10 P ft-

kips 
cl = 1 + 6/12 = I.s 
B, = 1.5(0.14 + 2.25 X 0.5 X 0.5) X 48 ft 

50.88 ft 
C,_ = 1/[l- 0.5(1-2e/Bm)2

] = 1.022 
mx,max = 2M!Bm = 2 X lOP X 1.022/50.88 

0.402 P ft-kips/ft 

Plank number I 2 3 4 5 6 

m,.m.JP (left) 0.148 0.212 0.276 0.340 0.404 0.340 
m,m.JP (right) 0.020 0.084 0.148 0.212 0.276 0.340 
m,,mjP (total) 0.168 0.296 0.424 0.552 0.680 0.680 
M per plank/ P 0.672 1.184 1.696 2.208 2.720 2.720 

Transverse variation of unit moment is illustrated in 
Fig. 17, which also shows for comparison the results of 
using a rectangular variation over an arbitrarily chosen 
width of 0.5f. (This value was chosen because it forms 
the basis for load distribution rules suggested by oth
ers.) It gives a moment in the most heavily loaded 
plank, which is 22.5 percent higher than that derived 
using the triangular variation. 

The total required resisting moment is 22.4 P ft-kips. 
This is 12 percent higher than the total applied moment 
because each plank was designed for the maximum, 
rather than the average, moment per unit width tribu
tary to it. However, in this case, if the average were 
used instead, the design moment for the most heavily 
loaded plank would not change, because the average 
and maximum moments per unit width are the same in 
the critical plank. Since all planks would probably be 
chosen to be identical, the design of the whole deck 
would be unaffected by the choice. 

DISCUSSION 
Exact solutions to the load-distribution problem are 

elusive and quite complex, depending on both the 
mathematical model and the numerical accuracy that 
can be obtained. Design rules can be distilled from 
them to any desired degree of accuracy and simplicity, 
but simplicity carries the penalty of conservatism. The 
rules presented here are an attempt to find a middle 
ground suitable for design office use. They are, in fact, 
more straightforward to use than they appear at first 
sight. 
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Fig. 17- Transverse variation on unit moment in Ex
ample 4 

Design for moment and deflection is for many cases 
less restrictive than under other proposed rules based 
on a rectangular variation of response. The equations 
for shear and torsion show higher values, especially for 
shear near midspan, that could control the design in 
some cases. This problem may be somewhat artificial, 
caused by the fact that the ACI strength equations sep
arately address punching shear and beam shear. The 
distinction is not really behavioral, but rather an ana
lytical convenience, and the result is that the shear 
strengths predicted for hollow-core sections reflect 
rather poorly the true strengths, generally underesti
mating them. 

Transverse moment and shear are not addressed here, 
but are discussed in Reference 2. They are likely to 
cause difficulties primarily with short, wide planks. 

Shear flexibility due to cell distortion causes concen
tration of the response under the load. Some uncer-
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tainty still exists 15 over the extent of its influence, but it 
is definitely most important in wide planks and in those 
that have roughly rectangular voids. Further research is 
needed to quantify its effects more accurately in those 
cases. 

These rules were based on linear elastic analysis and 
thin plate theory with parameters (such as the size of 
the patch load) chosen to represent the real, rather 
complex, geometry as well as possible. The· available 
experimental evidence in general corroborates the 
methods of calculation, but detailed experimental con
firmation in the inelastic range is highly desirable. 

CONCLUSIONS 
Design rules are presented for analysis of precast 

decks subjected to concentrated loads. They are de
rived from the results of a wide parameter study and 
provide guidance for most situations that the designer 
is likely to encounter. They are more detailed than 
other extant rules but are still simple enough to apply 
in design. 
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NOTATION 
A area enclosed by a line drawn along the mid-thick

ness of the flanges and outer webs of a hollow-core 
section 

Bd, Bm, B, B,. distribution width, based on triangular transverse 
variation of response, for deflection, longitudinal 
bending moment, torsion, and shear 

b member width 
C, response modification factor for use with wide 

decks 
C, response modification factor for use with loads near 

a free edge 
e,. e, nearer and farther distances from the load to a free 

edge 
h overall thickness of member 

flexural moment of inertia of member 
J torsion constant for member 
e span length 
M total applied longitudinal bending moment 
m, unit longitudinal bending moment 
mx, unit torsional moment 
Q,.,, Q, Q,. total equivalent unit shear, unit shear caused by 

torsion, and unit shear caused by applied shear 
S distance between face of load and critical section for 

shear 
T applied torque 

wall thickness 
1, thickness of outer web of hollow-core section 
Et sum of web thicknesses in one hollow-core member 
V total applied shear force 
V, shear force tributary to one member 
x distance from one support 
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r 

midspan deflection 
longitudinal load location, response location, and 
distance between response and center of load, each 
divided by f 
shear stress 

CONVERSION FACTORS 
I in. = 25.4 mm 
I ft = 0.3048 m 

I kip = 4.448 kN 
I kip/ft = 14.593 kN/m 
I ft-kip = I .356 kN-m 

I ft-kip/ft = 4.448 kN-m/m 
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