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Because ACI design procedures do not account for the size effect in
shear, there is concern that these procedures may be unconservative
for large concrete footings not containing shear reinforcement.
This paper describes an experimental program involving 16 specimens
designed to investigate the one-way shear strength of footings of
different thicknesses, slenderness ratios, and applied loading
patterns. Analytical studies were also performed to evaluate the
accuracy of currently available design procedures. It was found
that a combination of sectional models to predict the flexural and
shear capacities of slender footings and strut-and-tie models to
predict the shear capacity of footings with low slenderness ratios
gave accurate results.

Keywords: footings; shear; size effect; strut-and-tie; uniformly loaded
members.

INTRODUCTION
Reinforced concrete footings such as those shown in Fig. 1

are usually constructed without shear reinforcement and
hence the thickness of these footings is often governed by the
concrete contribution to shear strength Vc. For footings, ACI
318-081 requires that the shear strength be checked for both
“beam action shear,” (that is, one-way shear) and “two-way
action shear” (that is, punching shear). As shown in Fig. 1, the
specified critical section for beam action shear is located in a
plane across the entire width of the footing. In the design of
high-rise buildings, large column or wall loads can sometimes
result in the need for footings more than 10 ft (3 m) thick.

When the ACI shear provisions were developed,2-4 it was
not appreciated that the failure shear stress for slender
members not containing shear reinforcement decreases as
the thickness of the structural member increases.5-8 Because
ACI 318-081 does not account for this size effect, concern
has been expressed regarding the safety of very thick footings.8

Richart,9-10 in his classic 1948 footings papers, noted that
“the factor of safety of thin footings… appears greater than
in thick footings.” Although the footings shown in Fig. 1 can
be very thick, the ratio of their tributary shear length L0 to
their effective depth d is typically not very large. When this
ratio is low, an alternate force-resisting mechanism
consisting of diagonal struts and tension ties can form, and
this may provide adequate shear resistance even for very
thick footings.

This paper will describe a series of experiments designed
to investigate the one-way shear strength of large footings. In
addition, the results of analytical studies using strut-and-tie
models will be used to determine situations in which the current
ACI shear provisions are of adequate safety. Finally, some
suggested modifications to ACI 318-081 will be presented.

RESEARCH SIGNIFICANCE
The experiments and the associated analytical studies in

this paper provide new information on the safety of footings
designed by ACI 318-08.1 Code modifications are

recommended that would limit the potential for unsafe shear
designs of large footings not containing shear reinforcement. 

SIZE EFFECT IN SHEAR
Figure 2 illustrates the size effect in shear for two major

series of simple span specimens. The U series7 consists of
uniformly loaded members, whereas the P series11 consists
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Fig. 1—Examples of large footings.
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of point-loaded members. The basic ACI expression for the
failure shear stress v of a member without shear reinforce-
ment is given by

 (psi units) (1)

Joint ACI-ASCE Committee 326,2-4 which developed this
expression, chose the parameter M/(ρVd) because the stress
in the longitudinal reinforcement fs at shear failure is directly
proportional to this parameter and it was observed that v
decreased as fs increased. The committee recommended that
M/(ρVd) be calculated at the critical section for shear, taken
as d from a point load, or for uniformly loaded beams, d from
the reaction area. It can be seen from Fig. 2 that these two
series of slender beams, which have similar values of
M/(ρVd) at the critical sections for shear, have very similar
failure shear stresses. However, rather than v remaining
constant as d increases, which the ACI expression predicts,
the failure shear stress systematically reduces as d increases,
which is called the size effect in shear.

v
Vc

bd
------ 1.9 fc′ 2500ρVd

M
------- 3.5 fc′≤+= =

The simplest explanation of the size effect in shear is that
the larger flexural crack widths that occur in larger members
reduce the aggregate interlock capacity of these cracks and
hence trigger failure at lower shear stresses.11 Crack widths
near middepth where the shear stress is high increase nearly
linearly with both the tensile strain in the longitudinal reinforce-
ment and the spacing between cracks. This spacing, in turn,
has been shown7 to be proportional to member depth. The
shear stress that can be transmitted across such cracks,
however, decreases as the crack width increases and as the
nominal maximum coarse aggregate size ag decreases.12

Based on this reasoning, the simplified equations13 of the
modified compression field theory (MCFT)14 for sectional
shear strength have a first term in the denominator that models
the strain effect and a second term that models the size effect.
These equations are incorporated in CSA A23.3-0415

   (psi, in.) (2)

where the effective crack spacing sxe is given by

sxe = 1.24d/(ag + 0.63) ≥ 0.75d    (in. units) (3)

The longitudinal strain at middepth, εx , for reinforced
concrete members not subjected to axial load is calculated by

(4)

To use these CSA A23.3-0415 equations, the two
unknowns, v and εx , are found from Eq. (2) and (4). If these
equations are used to calculate the failure shear stress of the
14 test results shown in Fig. 2, the ratios of the measured-to-
calculated shear stresses have an average value of 1.07, a
coefficient of variation (COV) of 12.1%, and a least
conservative value of 0.87. On the other hand, because the
basic ACI 318-081 equation does not account for the size
effect, its average value of the test-to-predicted ratios is 0.79,
the COV is 34.8%, and the least conservative value is 0.42.

SLENDERNESS EFFECT IN SHEAR
The two series of experiments shown in Fig. 2 not only had

very similar failure shear stresses at similar depths, but also
showed similar behavior when they failed in shear, in that
they failed soon after the formation of the first significant
diagonal crack. For shorter members with small slenderness
ratios, shear failures do not typically occur upon the formation
of the first significant diagonal crack. Rather, the internal
forces in the member redistribute from those associated with
beam action to those associated with arch action, enabling
the member to carry even higher loads. The capacity of this
“remaining arch”16 can be determined using a strut-and-tie
model. Thus, the shear capacity of the member can be taken as
the larger of that from the sectional model, which predicts the
breakdown of beam action, and the strut-and-tie model, which
predicts the capacity of the remaining arch. All of the beams
shown in Fig. 2 are sufficiently slender such that the capacity
of the remaining arch is less than the shear corresponding to
the breakdown of beam action and hence they fail upon the
occurrence of the first significant diagonal crack.
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Fig. 2—Experimental results illustrating size effect in shear.
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Numerous series of shear tests16-18 have shown that as the
slenderness of a beam decreases, the shear stress at failure
increases. Figure 3 shows the results of two such series of
simply supported beams tested at the University of Stuttgart.17

The P series had 17 beams subjected to point loads in which
the shear span-depth ratio (a/d) varied from 1 to 8. The U
series had 14 beams subjected to uniformly distributed loads
in which L /d varied from 5 to 22. The beams all had similar
cross-sectional dimensions and material properties. Kani19

suggested that in comparing uniformly loaded beams with
point-loaded beams, the uniform load on each half of the
span should be replaced by a point load at the quarter point
of the span because such an equivalent point load causes the
same shear at the reaction and the same midspan moment.
This procedure has been used in preparing Fig. 3, which also
shows the corresponding strut-and-tie model used for these
equivalent point loads. To be consistent with this procedure,
the vertical axis in Fig. 3 uses the shear at the support rather
than the shear at the critical section, whereas the horizontal
axis uses either a/d or 0.25L/d. With these chosen axes,
neither the flexural failure strength nor the predicted strut-
and-tie shear strength depend on the type of loading. Thus,
there is only one line on the plot for each of these failure
modes. The predictions for the beam action failure shears
shown in Fig. 3 were determined from the simplified MCFT
equations (Eq. (2) through (4)) and different predictions for
the shear at the support are obtained for the P and U type beam
shear failures. This is because for the P series, the critical
section is near the load, which has high moments, and the
shear at this location is essentially the same as that at the
support. For the U series, however, the critical section is d
from the support, where the moment is low, and the shear at
the support can be significantly higher than the shear at this
critical section.

The provisions of the AASHTO LRFD specifications20

were used to generate the strut-and-tie predictions shown in
Fig. 3. Although these provisions are similar to those of ACI
318-081 Appendix A, they provide a more general and accurate
procedure for estimating the failure strength of the critical
diagonal strut.11 ACI 318-081 assumes that a diagonal strut
such as that shown in Fig. 3 will fail when the compressive
stress reaches 0.85 × 0.6fc′ . The AASHTO LRFD provisions,20

which are based on the MCFT,14 give the failure stress of
this strut, fce , as

(5)

where the principal tensile strain ε1 in the concrete
perpendicular to the strut is

ε1 = εs + (εs + 0.002)cot2αs (6)

In this equation, εs is the calculated strain in the reinforce-
ment at the failure load, whereas αs is the angle between the
compressive strut and the reinforcement (refer to Fig. 3). As
Eq. (5) indicates that the strut strength will be lowest where
the longitudinal tensile straining is greatest, the calculated
critical strength in the strut will be that calculated at the flexural
tension side of the member. Also note that for low angles of
αs, the cot2αs term becomes very large and thus fce becomes
very low.

fce
fc′

0.8 170ε1+
---------------------------- 0.85fc′<=

For both the ACI 318-081 and AASHTO LRFD20 strut-
and-tie methods, the width of the strut ws shown in Fig. 3 is
calculated as

ws = lbsinαs + wt cosαs (7)

where lb is the length of the bearing plate, and wt is the
effective height of concrete concentric with the reinforcing
tie, which can be taken as 2 × (h – d).

The strut-and-tie predicted failure loads shown in Fig. 3
were obtained by optimizing the geometry of the model to
maximize the predicted failure load. This involved finding
the depth of the top horizontal strut so that its stress at failure
equaled 0.85fc′ and determining the applied load that caused
the compressive stress in the diagonal strut to equal fce. Note
that, unlike the predicted sectional shear strengths, the
predicted strut-and-tie shear strengths do not have a size
effect, as the concrete is predicted to fail at the same
compressive stress irrespective of the size of the member. It
can be seen from Fig. 3 that the strut-and-tie predictions
follow the trend of the experimental results very well. It can
also be seen that if the shear strength predictions are based
only on the beam action sectional failure shears, the strength
of members with low slenderness ratios will be grossly
underestimated. Combining the predictions for the flexural,
sectional shear, and strut shear strengths, the average value

Fig. 3—Predicted and observed failure loads for Stuttgart
point-loaded (P) and uniformly loaded (U) beams.
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of the ratio of experimental-to-predicted strength for the 31
specimens is 1.16, the COV is 12.6%, and the least conservative
ratio is 0.89.

If the members summarized in Fig. 3 are analyzed by the
ACI basic shear strength equation (Eq. (1)) and the ACI 318-081

Appendix A strut-and-tie provisions, the average ratio of
experimental-to-predicted shear strength is 1.21 and the
COV is 15.4%, while the least conservative ratio is 0.78. The
AASHTO LRFD20 strut-and-tie predicted strengths shown in
Fig. 3 decrease in a continuous curve as the slenderness
increases. The ACI 318-081 predicted strut-and-tie
strengths, which are not shown, decrease more gradually
until an a/d of approximately 1.85, after which point no ACI
strut-and-tie predictions are possible because of the ACI
requirement that αs not be taken less than 25 degrees. One
reason for this limit is that for lower angles, the ACI-predicted
strut strength becomes increasingly unconservative.21

EXPERIMENTAL PROGRAM
To investigate safety concerns with large, lightly reinforced

footings, a series of tests was performed on specimens with
effective depths d up to 3 ft (1 m). Specimens representing a
1 ft (300 mm) wide footing strip were tested under either
concentrated loads or uniformly distributed loads (refer to
Fig. 4(a)). Table 1 summarizes these 13 new tests,22 along
with three previously published (BN100, DB230, and TTC)
Toronto results8,23 and the eight large footings tested by

Richart,9-10 for which one-way shear was critical.
Richart’s9-10 specimens were loaded by 14 x 14 in. (356 x
356 mm) columns and were supported on a bed of springs.
The first eight Toronto tests in Table 1 are large-scale
specimens with effective depths of approximately 3 ft (1 m)
(refer to Fig. 4(c)). The next four tests are intermediate-scale
specimens with effective depths of approximately 2 ft
(600 mm), while the final four tests are small-scale specimens
with effective depths of approximately 9 in. (230 mm).
Straight reinforcing bars extending to the ends of the specimens
were used in all of the Toronto tests.

Loading designations U1, U2, U1p, and P are used in
Table 1 to identify the type of loading applied to the specimens,
and these loading types are described in Fig. 4(a). The small-
scale specimens were loaded with an oil-filled rubber bag
between the specimen and the bed of the testing machine. The
top reaction was provided by a plate 6 in. (150 mm) wide in the
span direction, supported by rollers and reacting against the
head of the testing machine. For the large-scale specimens,
the uniformly distributed load was produced by a large
number of small hydraulic jacks supplied by a single
manifold,22 as shown in Fig. 4(b). The jack forces were
applied to the specimens through 4 x 4 x 1 in. (100 x 100 x
25 mm) bearing plates. Each bearing plate sat on the
spherical seat attached to the ram of the jack. The base of
each jack was positioned on a steel plate and two layers of
1/8 in. (3 mm) lubricated polytetrafluoroethylene sheets

Fig. 4—Details of experimental program. (Note: 1 in. = 25.4 mm.)
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were placed between these base plates and the top steel
surface of the reaction beam to minimize longitudinal
restraint. The top reaction representing the column force
was provided by a bearing plate supported by a roller
restrained against longitudinal movement. For Specimen
AF11, this plate was 12 x 12 in. (300 x 300 mm) in contact
area and was 6 x 12 in. (150 x 300 mm) for the remaining
specimens. The three AF intermediate-scale specimens
were loaded with the system used for the large-scale
specimens using 6 x 12 in. (150 x 300 mm) plates. The TTC
specimen in Table 1 was a 46% scale model of a slice of a
subway tunnel.8 It was loaded with seven uniformly spaced
loads acting through plates 10.5 x 21.5 in. (265 x 550 mm)
in contact area. Although this experiment was conducted to
study the shear behavior of a subway tunnel, the loading of
the roof slab of the tunnel is very similar to that of the two-
column spread footing shown in Fig. 1(c).

DISCUSSION OF EXPERIMENTAL RESULTS
The most important experimental observations from the

tests are summarized in Table 1. The definitions of the terms
overall length L, tributary shear length L0, and shear span a
are shown in Fig. 4(a). The values of M/(ρVd) have been
calculated a distance d from the face of the top bearing plate.

Experimental results include P, which is the total load
applied to the beam at failure, and the parameter 2Δ/L, where
Δ is the maximum measured vertical displacement. If all of
the displacement was caused by shear strain and none by
curvature, 2Δ/L would equal the average shear strain. The
shear strains γ, which are listed in the table, were measured
with pairs of displacement transducers mounted at ± 45 degrees
to the horizontal (refer to Fig. 4(b)). By comparing γ with
2Δ/L, an assessment of the importance of the shear deformations
in causing the total deformations may be made. The
maximum diagonal crack widths w , measured at the last load
stage prior to failure, are also listed. Finally, the maximum
strain measured in the longitudinal reinforcement, εs , at the
maximum moment location is reported. The strain gauges
measuring these strains were set to zero when the applied
machine load was zero and hence they did not include the
initial compressive strains in the reinforcement caused by
concrete shrinkage. The maximum shear at the section d
from the face of the top bearings Vd is given in the table in
terms of Vd/(bd ).

All specimens failed in shear except AF11 and AP1, which
showed signs of flexural yielding prior to failure. No bond
failures were observed. Figure 5 shows the crack patterns at
failure for many of the specimens in this study. Because all

fc′

Table 1—Experimental observations and predictions for footing specimens
Experimental observations Predictions

Name 
Load
type L, in.

L0/d 
or a/d fc′ , psi ag, in. ρ, % fy, ksi

Pfail , 
kips

2Δ/L , 
× 10–3

γ,
×10–3

w, 
mm

εs ,

×10–3
αs, 
deg

εx ,

×10–3

Vd/(bd ), psi

Flex Strut Beam

Richart footing specimens, 1948;  d = 16 in.

502a U1 108 2.94 3530 1 0.54 60.9 180 554 — — — 2.5 2.33 18.2 0.78 2.04 2.14 1.98 1.14

502b U1 108 2.94 3285 1 0.54 60.9 180 578 — — — 2.5 2.51 18.1 0.76 2.10 2.09 2.00 1.20

503a U1 108 2.94 3545 1 0.54 60.9 180 586 — — — 2.5 2.46 18.2 0.78 2.04 2.14 1.98 1.21

503b U1 108 2.94 3480 1 0.54 60.9 180 550 — — — 2.5 2.33 18.2 0.78 2.05 2.13 1.98 1.14

505a U1 120 3.31 3680 1 0.68 61.6 170 549 — — — 2.3 2.90 16.4 0.73 2.39 1.90 2.06 1.41

505b U1 120 3.31 3730 1 0.68 61.6 170 525 — — — 2.3 2.76 16.4 0.73 2.38 1.91 2.05 1.35

505a U1 120 3.31 3350 1 0.68 61.6 170 500 — — — 2.3 2.78 16.4 0.70 2.49 1.84 2.09 1.33

506b U1 120 3.31 3810 1 0.68 61.6 170 500 — — — 2.3 2.60 16.4 0.73 2.38 1.93 2.04 1.27

Large-scale specimens, present study; d = 36.4 in. (d = 35.2 in. for DB230, d = 34.1 in. for AF13)

BN100 P 213 2.92 5370 3/8 0.76 79.8 243 83 2.2 0.6 0.30 1.2 1.37 18.8 0.67 2.64 0.90 1.32 1.04

UN100 U1 236 3.16 6230 3/8 0.76 79.8 143 267 3.9 3.1 2.00 2.0 2.61 17.9 0.57 3.04 2.91 1.43 0.90

AF7 U1p 236 3.16 4900 3/4 0.76 81.5 143 160 3.9 2.6 2.50 1.82 2.71 17.8 0.58 3.85 2.68 1.65 1.01

AF8 P 157 2.16 4900 3/4 0.76 81.5 143 109 2.9 1.4 1.10 1.38 1.86 24.5 0.58 3.85 1.72 1.65 1.08

AF11 U1 157 2.00 5250 3/4 0.76 81.5 66 595 5.5 2.4 1.40 9.7 4.41 25.8 0.47 3.67 4.28 1.81 1.20

AF11-r U1p 157 2.00 5250 3/4 0.76 81.5 66 317 4.7 2.6 2.00 2.0* 4.75 25.8 0.47 4.76 4.28 1.81 1.11

DB230 P 213 3.02 4640 3/8 2.09 79.8 91 113 2.0 1.2 0.90 0.8 2.04 18.0 0.32 6.39 1.22 1.83 1.11

AF13 U1 236 3.38 5180 3/4 2.16 68.9 55 418 4.1 3.2 2.00 1.4 4.95 19.6 0.29 6.97 4.05† 2.20 1.22

Intermediate-scale specimens, present study; d = 24.3 in.

AF3 U1 236 4.74 3960 3/4 0.76 68.9 247 122 5.1 1.8 1.15 2.6 2.59 12.4 0.75 2.48 1.19 1.70 1.52

AF5 U2 236 4.54 4540 3/4 0.76 68.9 180 124 8.1 2.3 0.40 2.6 2.34 22.5 0.68 2.35 1.20 1.80 1.30

AF6 U1 236 2.94 4670 3/4 0.76 81.5 128 292 7.9 3.4 1.40 2.1 2.97 18.9 0.61 3.59 2.87 1.89 1.03

TTC U2 216 3.90 6520 3/8 0.51 71.1 261 411 4.6 1.4 0.35 2.1 1.53 28.7 0.92 2.66 1.44 1.36 1.06

Small-scale specimens, present study; d = 9.1 in.

AP1 U2 39.4 1.85 5190 1/4 1.16 73.2 204 64 15.0 3.8 0.4 3.1 4.31 39.5 0.77 3.82 4.04 1.97 1.13

AP2 U2 59.1 2.93 5190 1/4 1.16 73.2 154 29 7.1 1.5 0.3 2.0 2.98 29.6 0.68 3.88 3.09 2.11 0.96

AP3 U1 39.4 1.85 5190 1/4 1.16 73.2 37 66 9.8 — 0.5 2.8 4.44 26.4 0.41 4.48 4.25 2.62 1.04

AP4 U1 59.1 2.93 5190 1/4 1.16 73.2 83 32 5.9 4.5 0.6 2.2 3.25 18.4 0.53 4.29 2.89 2.37 1.12
*Actual strain is sum of this value and residual plastic strain, which was 4.6 × 10–3.
†Strut-and-tie capacity governed by second strut.
Notes: 1 in. = 25.4 mm; 145 psi = 1 MPa; 0.145 ksi = 1 MPa; 1 kip = 4.45 kN.

Average 1.16

COV 12.7%

M
ρVd
----------

Vd

bd fc′
---------------- fc′ Exp. 

Pred.
------------
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specimens were symmetrically loaded, only the half-length
of the specimen that contained the failure crack is shown.

It is of interest to compare the failure loads and cracking
patterns of the first four large-scale specimens given in Table 1
and shown in Fig. 5. Note that point-loaded member BN100
failed at a shear stress ratio (Vd/(bd )) only approximately
1/2 of that of the companion uniformly loaded Specimen
UN100 and that the crack patterns at failure were appreciably
different. Specimen AF7 was similar to Specimen UN100,
except that the uniform load was not applied near the center
of the footing. It is of interest that these two specimens
showed very similar failure shear stress ratios and crack
patterns, implying that loads applied within d of the column
have little influence. The point loads applied to the bottom
face of Specimen AF8 are at the same location as the resultant
of the uniform loads applied to Specimen AF7; therefore,
these two specimens have the same M/ρVd ratios at the critical
section. In spite of this, Specimen AF7 failed at a shear stress
ratio 1.46 times higher than Specimen AF8.

The crack pattern for Specimen AF11 shown in Fig. 5 and
the experimental observations in Table 1 were recorded
when flexural yielding of the longitudinal reinforcement
began. The high shear strains and wide diagonal cracks
indicated that a shear failure was imminent. The specimen
was unloaded, the jacks in the central region were removed
to convert from U1 loading to U1p loading, and the specimen
was reloaded as AF11-r. While flexural yielding was now
avoided, the maximum allowable oil pressure in the loading
system was reached prior to final shear failure of the member.

The crack patterns for three of the intermediate-scale
specimens are shown in Fig. 5. Note the very different crack
patterns that result from the different loading schemes used.
Thus, in Specimen AF3, the flexural cracking is restricted to
approximately the central half of the member length,
whereas in Specimen AF5, flexural cracking extends for
almost the full length. Both specimens failed at very similar
loads. Although Specimen AF6 was loaded with two-point
loads, the intention of the test was to simulate a U1 footing
with a shorter tributary shear length L0 than Specimen AF3.
The crack pattern of this specimen at failure resembles that
of Specimens UN100 and AF7 which, like Specimen AF6,
had an L0/d ratio of approximately 3.

The small-scale specimens had depths 1/4 of those of the
large-scale specimens and enable a direct comparison to be
made of failure shear stress across different depths and
slenderness ratios. Figure 6 compares the observed failure
shear stress ratios with the effective depth and the slenderness
ratios for a large number of the uniformly loaded specimens.
It can be seen that there is a substantial decrease in failure
shear stress with increasing depth for the slender Shioya7

tests, where L0/d equaled approximately 6. For the less
slender Toronto experiments with L0/d of approximately 3,
the size effect is much less pronounced. For the even less
slender Toronto tests with L0/d of approximately 2, there is
no evidence of a size effect. It is important to note that for
most spread footings, the L0/d ratio will be less than 2.

ANALYTICAL STUDIES
It can be seen that three predicted values of Vd at failure

are given in Table 1 for each specimen with the critical one
highlighted. The column labeled “Flex” gives the shear
corresponding to flexural failure calculated by ACI 318-08.1

The “Strut” column gives the shear corresponding to
crushing of the critical strut calculated using Eq. (5), while

fc′

Fig. 5—Observed crack patterns at failure.
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the values labeled “Beam” correspond to the shear at which
the breakdown of beam action is predicted by Eq. (2). As noted
with respect to Fig. 3, the predicted shear failure load is the
larger of the “Beam” and “Strut” predictions. The predicted
failure load, however, cannot exceed the flexural prediction.
Also shown in Table 1 are the predicted values of αs—the
calculated strut angle for the optimized strut-and-tie model—
and εx , the longitudinal strain at middepth calculated by
Eq. (4). The strut-and-tie models used for U2 and P loading
are shown in Fig. 3, while the strut-and-tie model used for U1
loading is shown in Fig. 7. Overall, the predictions in Table 1
show an average ratio of experimental-to-predicted strength
for the 24 specimens as 1.16 with a COV of 12.7%.

In the strut-and-tie model used for U1 loading, 12-point
loads along the length of the member were used to represent
the uniformly distributed load (refer to Fig. 7). The width of
each strut was taken as (L/12)sinαs—that is, wt in Eq. (7) is
taken as 0 for members with only one layer of reinforcement.
The critical strut will be the outer strut with the lowest αs if
there is only one layer of flexural tension reinforcement. If
there are multiple layers of reinforcement, the width of the
outer strut can be found from Eq. (7). In this case, however,
the second strut from the end with the smaller strut width but
larger αs will typically be critical.

The predicted capacity lines shown in Fig. 7 have been
prepared for the specific case of 0.76% reinforcement ratio
and a concrete strength of 5000 psi (34 MPa). The 12 specimens
in Table 1 with reinforcement ratios between 0.68% and
1.16% and U1 or U1p loading have been plotted in the
figure. It is important to note from Fig. 7 that although there
is a strong size effect predicted for the shear at which beam
action breaks down, there is no predicted size effect for failures
governed by strut crushing. Thus, for the experimental points
plotted at L0/d of about 3, there is no size effect predicted;

however, as shown in Fig. 6, there was in fact a small size
effect observed.

It is important to note that the L0/d ratio below which
member depth is predicted to no longer influence failure
shear stress depends on the percentage of longitudinal
reinforcement, concrete strength, and aggregate size. For an
engineer using the convenient ACI 318-081 shear strength
expression of 2 bd, which is a simplification of Eq. (1),
it is of interest to determine the value of L0/d below which
this equation will be conservative. If the conservative
assumptions are that the longitudinal strain εs at the critical
outside strut is 2 × 10–3, cotαs is L0/d, and fc′  is 3000 psi
(21 MPa), then a shear strength of 2 bd will be exceeded
when L0/d is smaller than approximately 2.6.

RECOMMENDED CHANGES TO ACI 318-181 CODE
The sectional shear provisions of ACI 318-081 neglect the

size effect in shear and hence can lead to unconservative
estimates of shear capacity for members with large depths.
While for beams this safety concern is mitigated by the
requirement to provide minimum stirrups if Vu exceeds
0.5φVc, this provision does not apply to footings. The
experimental and analytical results previously presented
show that the ACI 318-081 procedures can be unconservative
for large footings with high slenderness ratios; hence, the
exclusion from the minimum shear reinforcement requirements
should be limited to footings with low slenderness ratios.

fc′

fc′

Fig. 6—Observed shear stresses at failure for uniformly
loaded members of different depths and different slenderness
ratios.

Fig. 7—Predicted and observed failure shears for spread
footings.
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Based on the previous discussion, it can be concluded that
the usual ACI 318-081 estimate for Vc—namely, 2 bd—
will be conservative for spread footings if the slenderness
parameter L0/d is less than 2.5 regardless of member thickness.

If it is desired to determine the shear capacity of footings
with low slenderness ratios more accurately than 2 bd,
then a strut-and-tie model should be formulated and
analyzed. It will be found, however, that if ACI 318-081

Appendix A is used for this purpose, a discontinuity will be
encountered when the angle of the strut drops below 25 degrees.
To avoid this discontinuity and obtain more accurate estimates
of shear capacity, it is suggested that the 25-degree limit be
eliminated and that the effective compressive strength of the
concrete strut be taken as

(8)

This equation has been developed from Eq. (5) and (6),
assuming that εs is approximately 0.002 and that the principal
compressive strain in the concrete is somewhat less than the
0.002 conservatively assumed in Eq. (6).

CONCLUDING REMARKS
Reinforced concrete footings are usually constructed

without shear reinforcement and often are of substantial
thickness. Because ACI 318-081 does not account for the
size effect in shear, it is possible that large footings designed
by this code may be unconservative. Thus, two of the large
Japanese footing experiments shown in Fig. 2 failed in shear
at less than 50% of the ACI-predicted shear strength. For
most footings, however, the loads that generate the shear can
be carried by direct strut action and hence the size effect is
much less critical. The purpose of this paper is to more
clearly identify the footings for which the current ACI 318-081

provisions will be unconservative.
This paper summarizes the results of 16 experiments on

footing strips, 13 of which were subjected to uniform loads.
The shear slenderness of a uniformly loaded member can be
defined as L0/d, where L0 is the distance from the face of the
column or wall to the point of zero shear. For typical spread
footings, the traditional ACI 318-081 shear provisions are
conservative if L0/d is less than 2.5. When the L0/d signifi-
cantly exceeds 3, however, as was the case with the Japanese
tests, the ACI 318-081 shear provisions can be significantly
unconservative (refer to Fig. 6).

This paper also summarizes the results of analytical studies
using strut-and-tie models and sectional shear predictions to
investigate the shear strength for a range of footing thicknesses,
slenderness ratios, and loading types. It is shown that these
code-based analytical models are capable of accurately
explaining the observed experimental results. It was found
that the AASHTO LRFD20 strut-and-tie model gave better
predictions than those of the ACI 318-081 Appendix A model.
Suggestions are made for improvements to ACI 318-08.1
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shear (Specimen AF3 with L0/d = 4.74 in beam shear and 
Specimen UN100 with L0/d = 3.16 in strut shear). Neverthe-
less, the crack patterns shown in Fig. 5 are identical for all of 
these specimens. What is the mechanical background for the 
different predictions? Please clarify.

Looking at Eq. (2) to (4), which are based on the modified 
compression field theory (MCFT), the following comments 
can be made:
•	 The effective crack spacing (Eq. (3)) is not influenced 

by the maximum aggregate size or the effective depth 
but by the bond characteristics of the longitudinal 
reinforcement, which is not considered.

•	 Most of the crack patterns shown in Fig. 5 also 
completely contradict Eq. (3). The crack governing the 
failure was the last one—that is, no crack spacing can 
be deduced there.

•	 Neither the maximum diagonal crack widths w listed 
in Table 1 nor the relative crack widths w/d show any 
correspondence to the given Exp./Pred. values. This 
reveals that the source of the shear capacity is not the 
aggregate interlock; hence, the validity of Eq. (3) must 
be questioned as well.

•	 It is questionable whether MCFT-based equations could 
be applied at all in the case of these footings, as the 
original Toronto test panels showed—at least in one 
direction—a dense reinforcement. These test specimens 
had some tensile longitudinal reinforcing bars only and 
high regions of the web were unreinforced.

The failure stress of the diagonal strut calculated according 
to Eq. (5) and (6), which is based on the MCFT,14 does 
not have any mechanical relevance. The principal tensile 
strain ε1 in the concrete perpendicular to the strut should be 
compatible with the uncracked concrete in the large regions 
around the critical strut. Moreover, as the authors correctly 
state, in the case of uniformly loaded beams (Type U2), the 
critical section is near the support, where the moment is low. 
How does this fit into Eq. (5) and (6)?

Calculating the average values for the three groups of 
Toronto specimens, it is interesting that the mean values 
for the large-, intermediate-, and small-scale specimens are 
1.08, 1.23, and 1.06, respectively, which reveals that Eq. (2) 
to (6) preferred by the authors have a systematic deviation in 
the case of d = 24 in. (∼0.60 m). Please clarify.

The authors state that the threshold value of L0/d between 
the strut and beam depends on the percentage of longitu-
dinal reinforcement, concrete strength, and aggregate 
size (which is questionable). As a simplification, they 
propose that L0/d equals approximately 2.5 to 2.6. Then, 
recalculating the angle of the (last) strut, one arrives at 
approximately 25 degrees; hence, the introduction of 
smaller angles as proposed by the authors is not necessary. 
Thus, the effective compressive strength of the concrete 
strut, as proposed in Eq. (8), which does not have any real 

The experimental program and analytical studies using strut-
and-tie models presented in the paper pose some questions:
•	 The data shown in Table 1 reveal that only the depths 

of the specimens were chosen systematically. All other 
characteristics form a stochastic cloud; thus, any statistical 
evaluation is misleading, even though the average and 
coefficient of variation (COV) are quite comforting.

•	 It is prudent to refer to the slabs of Richart9,10; never-
theless, the type of loading resulting from uniformly 
distributed springs or hydraulic jacks, respectively, 
results in fundamentally different failure patterns. Due 
to the deformation of the specimens during loading, the 
springs near the ends of the footings bear less and less 
of the load. This is why the Exp./Pred. ratios listed in 
Table 1 are significantly higher than the case of the other 
specimens. Hence, they should not be considered in the 
statistical evaluation.

Discussing the experimental results, the authors write: 
“All specimens failed in shear except AF11 and AP1, 
which showed signs of flexural yielding prior to failure. No 
bond failures were observed.” The crack patterns shown in 
Fig. 5 clearly contradict this statement. Specimens BN100, 
UN100, AF7, AF8, AF5, and AF6 show pronounced hori-
zontal cracks along the line of the flexural reinforcement, 
which result in the softening of the bond, increasing the 
crack width of the critical section and resulting in failure. 
For the same reason, the strains measured in the longitu-
dinal reinforcement at the maximum moment location, εs,
are irrelevant.

During the analytical studies, the authors look for the 
“optimized critical” strut, which—for U1 loaded speci-
mens—is the last strut shown in Fig. 7, or in the case of 
Specimen AF13, the second to last nearby. The governing 
geometrical size of the struts is their width ws calculated 
with Eq. (7). Nevertheless, comparing the relevant crack 
patterns shown in Fig. 5 with the strut pattern shown in 
Fig. 7 reveals that the specimens are completely uncracked 
in these regions. Moreover, when calculating the predicted 
shear failures of the spread footings, the authors neglect the 
second term of Eq. (7), hence diminishing the corresponding 
Exp./Pred. values and “improving” the average and COV 
values. The authors should clarify for designers under which 
conditions which terms of their now fairly empirical model 
can be omitted. It is astonishing to see in Fig. 7 that the 
widest width of the strut governs its strength and not the very 
narrow opposite end under the loading plate. Please clarify.

Studying the experimental results and comparing them 
with the results of the analytical studies, it is interesting 
to learn that one of the shortest specimens, AF11, failed in 
flexure. Please clarify. How was this possible? 

For the other specimens with U1-type loading, three 
specimens with L0/d of approximately 3 were predicted 
to fail in flexure—five in strut shear and four in beam 
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The discusser asks how Specimen AF11—the shortest 
specimen—could have failed in flexure rather than shear. 
Figure 3 clearly shows that as beams get shorter, the 
predicted shear strength increases rapidly. If the span is 
sufficiently short, flexural failures will result. This, of 
course, is one of the key conclusions of Kani5 in terms 
of a “valley of diagonal failure,” whereby sufficiently 
long or sufficiently short members will not fail in shear. 
Specimen AF11 was on the edge of the valley of shear failure.
The paper combined three different predicted failure modes: 
1) sectional shear failure; 2) strut-and-tie shear failure; and 
3) flexural failure. The first was governed by the breakdown 
of the ability to resist aggregate interlock, the second by 
the inability of a strut to carry compression across cracked 
concrete, and the third by the maximum ability of steel to 
resist tension stresses. When the span lengths are varied, 
different failure modes are predicted to govern, as shown 
in Fig. 7. The mechanical background for these methods is 
presented in the paper and need not be repeated herein. The 
lack of perfect matching between crack diagrams and strut-
and-tie models is discussed previously.  

With regard to the influence of member depth and aggre-
gate size on effective crack spacing, the discusser is encour-
aged to follow up on References 7 and 12, both of which are 
clearly cited in the original paper.

Figure 5 highlights the failure shear crack with a darker 
line. At the level of the flexural tension reinforcement, none 
of the critical cracks were “the last,” as the discusser claims. 
It should also be noted that the methods in this paper are not 
intended to predict crack patterns but instead shear strengths, 
and Table 1 shows that they do this rather well.

The largest observed crack width in a beam will result 
from many different factors. The discusser seems to believe 
that there should be a numerical correlation between the 
observed maximum crack width and the ability of the MCFT-
based shear methods to predict shear strength. This appears 
to be an attempt to compare apples to oranges, as one should 
not expect there to be a correlation such as this.

The discusser asks whether or not the MCFT-based 
methods in this paper can be applied to footings. Table 1 
shows that the methods do indeed work well, with an average 
test-to-predicted ratio of 1.16 with a COV of only 12.7%.  

The equations used to determine the average principal 
tensile strain in the concrete strut result from a Mohr’s circle 
of strain. The authors believe that this is an appropriate way to 
determine strain transformations. Equations (5) and (6) apply 
equally to “disturbed regions” near supports and regions 
away from supports. In the authors’ opinion, no special guid-
ance for the application of these equations is needed.

The discusser notes that the different-sized specimens 
have different average test-to-predicted ratios. This is due 
to natural experimental scatter and is not surprising. The 
higher average for the intermediate scale specimens noted 
by the discusser is primarily a result of Test AF3, which was 
unusually strong compared to the predictions.

Note that the proposed solution for when engineers can 
ignore the size effect for footings is indeed that these foot-
ings need only receive special attention when the L0/d ratio 
is larger than approximately 2.5. This was chosen as a conve-
nient simplification and is not intended to be a replacement 
for the strut-and-tie method in the ACI code.

mechanical or theoretical background (note the uncracked 
concrete regions), becomes irrelevant as well.

AUTHORS’ CLOSURE
Table 1 presents nine different variables that describe the 

specimens in this paper. To systematically vary these nine 
variables over four different values (as was presented for 
depth) would require a total of 49 tests. Thus, to satisfy the 
discusser, a total of 262,144 shear tests would have been 
required rather than the 24 tests shown in Table 1. Clearly, 
this is not realistic. The statistical evaluations in the paper 
were performed in an identical manner to those performed 
in the calibration of code equations, the evaluation of public 
safety, and so on.

The authors disagree that Richart9,10 did a poor job of 
applying uniform loads to his experimental footing slabs of 
the 1940s. The method used was to force the slab to displace 
into a bed of relatively low stiffness springs. By using low 
stiffness springs, the individual spring displacements would 
be fairly consistent, as members failing in shear are stiff. 
What matters for the nonuniformity of the load would be 
the nonuniformity of the displacements, and this would have 
been small. 

The crack patterns shown in Fig. 5 were based on the 
appearance of the specimens after they failed and after the 
load was removed. In a number of cases, the dowel action 
of the flexural reinforcing bars resulted in the bottom cover 
being pushed off the specimen after failure occurred. (This 
was confirmed with high-speed video recording.) Thus, 
some of the pictures in Fig. 5 show what appear to be exten-
sive bond cracking, but this occurred after the load resisted 
by the specimen was already decreasing; thus, this could not 
have been the trigger of failure.

The discusser needs to recall that the strut-and-tie method 
is a lower-bound method. It need not be the case that the final 
crack diagrams match the assumed model in every detail. The 
strut-and-tie model used for Fig. 7 is the one that is predicted 
to produce the lowest strength; thus, this was the one that was 
used. Given that the code does not allow uncracked concrete 
tension ties, it is not clear to the authors what other strut-and-
tie model could have been used to carry the load from the 
footing to the column in the absence of stirrups. 

The strut-and-tie model used for the analysis of the 
U1 specimens is shown in Fig. 7. The uniform loading is 
simulated in the figure with a set of 12 concentrated loads. 
For the 10 “inner” fan struts, which go from the “soil” up 
to the top column load, it is clear from the geometry that 
only the first part of Eq. (7) can be used, as it would be 
geometrically impossible for both terms of the equation to 
apply. For simplicity, it is recommended that all struts be 
treated this way, except for cases where there are multiple 
layers of longitudinal reinforcement. In such cases, as for 
Specimen AF13, this strut will generally not control; the 
second strut, which does not have this second term, will 
control instead.

The discusser is surprised that the authors have taken the 
critical location in the strut-and-tie model in Fig. 7 as the 
wide end rather than the narrow end of the strut. This is 
clearly explained on page 133 of the original paper, which 
notes: “As Eq. (5) indicates that the strut strength will be 
lowest where the tensile straining is greatest, the calculated 
critical strength in the strut will be that calculated at the flex-
ural tension side of the member.”  
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If lw = 25.0 ft (7.62 m), hw = 180 ft (54.86 m), and P/fc′Ag
= 0.0, then lp = 12.9 ft (3.93 m) in lieu of the authors’ value 
of 14.0 ft (4.27 m).

Considering the values of Eq. (9), Eq. (14) is in good 
agreement with the hinge length specified in Table 1 with 
a 0 to 8% (+/–) variation.

REFERENCES
31. Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley 

& Sons, Inc., New York, 1975, 769 pp.

AUTHORS’ CLOSURE
The authors appreciate the interest in their paper. The 

following are in response to the specific comments/questions.
1. The subject of the paper is plastic hinge lengths in 

concrete shear walls subjected to seismic (reverse cyclic) 
bending. Reverse cyclic loading increases plastic hinge 
lengths because of additional cracking and bond slip that 
occurs during load cycles. In the nonlinear finite element 
analysis that was done to develop the results given in Table 1, 
the influence of reverse cyclic loading was captured using 
appropriately reduced concrete tension stresses (tension-
stiffening model). The model was validated by comparing 
predictions with tests of walls subjected to reverse cyclic 
loading (Fig. 1 and 2).

2. If two parallel shear walls with different lengths 
lw1 and lw2 are interconnected only at the top, the wall with 
the longer horizontal dimension lw1 would yield first at a 
smaller top displacement because the yield curvature of a 
wall is inversely proportional to the wall length. This hypo-
thetical case was used to formulate a displacement-based 
design approach for shear wall buildings.32 In real buildings, 
parallel shear walls are interconnected at many points over 
the building height by floor slabs; this results in a complex 
interaction between walls of different lengths. When walls 
are interconnected at numerous points, it is not possible for 
the longer wall to develop a plastic hinge while the other 
wall is still elastic because the two walls must maintain the 
same deformed shape. Both walls will yield at essentially the 
same top wall displacement.

The relationship between displacement and curvature 
in two parallel walls with different lengths is essentially 
controlled by the longer wall, except in the plastic hinge 
zone of the more slender wall. As discussed in the paper, the 
height over which inelastic curvatures spread in a shear wall 
depends on the wall length. Thus, the more slender wall will 
have a smaller zone of inelastic curvature but must have the 
same deflected shape above the plastic hinge zones—the two 
walls must have the same inelastic rotation. The result of this 
is that the more slender wall will have significantly larger 
maximum inelastic curvature demands at the base (Fig. 8(a) 
and 11).

Equation (10) in the paper provides an estimate of the 
larger maximum curvature demand φmax,2 in the wall with the 
smaller horizontal dimension lw2 and thus smaller equiva-
lent plastic hinge length lp,2 and smaller yield curvature φy,2,

The authors have presented an interesting paper on 
empirical equations for plastic hinge lengths in high-rise 
concrete shear walls considering the size effect; however, 
the discussers would like to offer the following comments:

1. Table 1 does not address whether the loading condi-
tion is monotonic or cyclic because the plastic hinge length 
varies with the loading condition.

2. The values of ϕmax,1 and ϕmax,2 specified in Eq. (10) are 
unclear. Are these values at a 2% drift or an ultimate curva-
ture ductility? If they are based on the ultimate curvature 
ductility or a 2% drift, what was the value of displacement 
or curvature ductility and what was the relationship between 
the curvature ductility and displacement ductility? 

Based on the published literature, ϕy is related to εy and 
ϕmax and ϕu are related to the displacement ductility or 
curvature ductility. 

3. The authors’ Eq. (9) refers to the term z. Because the 
neutral axis depth associated with the maximum curvature 
value ϕmax could be approximated to 0.2lw, and if 0.1lw is 
a clear cover of reinforcement in each side of the wall, the 
value of z would be approximately 0.833lw. By substituting z
= 0.833lw in Eq. (9), Eq. (9) would become

( )( )0.2 0.05(0.833 ) 1 1.5 / 0.8p w w c g wl l l P f A l= + − ≤′ (11)

If P/fc′Ag = 0, then lp would be

0.242p wl l= (12)

This value is inconsistent with References 2 and 22.
4. Because the plastic hinge length lp is a hypothetical 

length over which the maximum curvature is assumed to be 
constant,31 the conservative estimates of the plastic hinge 
length would be22

( )0.2 0.044p r wl A l= + (13)

where Ar is the aspect ratio hw/lw of the wall.
Equation (13) does not consider the P/fc′Ag term. Based on 

the typical uniform distribution of reinforcement, including 
the edge boundary element effects,18,22,31 the P/fc′Ag term 
could be introduced in Eq. (13) and the plastic hinge length 
would be

(14)( ) ( )0.2 0.044 1 1.3 / 0.8p r w c g wl A l P f A l= + − ≤′

If lw = 12.5 ft (3.81 m), hw = 180 ft (54.86 m), and P/fc′Ag
= 0.30, then lp = 6.36 ft (1.94 m) in lieu of the authors’ value 
of 6.3 ft (1.93 m).

If lw = 25.0 ft (7.62 m), hw = 180 ft (54.86 m), and P/fc′Ag = 
–0.05, then lp = 13.76 ft (4.19 m) in lieu of the authors’ value 
of 15.0 ft (4.59 m).
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given the maximum curvature demand φmax,1 in the wall with 
the larger horizontal dimension lw1 and thus larger equiva-
lent plastic hinge length lp,1 and larger yield curvature φy,1.
Equation (10) can be used to estimate the maximum curva-
ture demand in the more slender wall at any drift level at 
which the walls are yielding. The first step is to determine 
the relationship between the particular building drift and 
maximum curvature demand φmax,1 in the longer wall, using 
an appropriate relationship for a single wall.3,5 The previ-
ously suggested methods for estimating curvature demand 
from curvature ductility and displacement ductility relation-
ships are strongly discouraged.5 The ratio of plastic hinge 
lengths lp,1/lp,2 in Eq. (10) can be determined by applying 
Eq. (9) or a simplified version of Eq. (9) (discussed in the 
following) to each of the walls. The final two parameters in 
Eq. (10)—the yield curvatures of the two walls φy,1 and φy,2—
can be estimated very simply as 0.003/lw1 and 0.003/lw2.

3. The parameter z that appears in seven of the eight equa-
tions presented in the paper for estimating equivalent plastic 
hinge length, including Eq. (9) developed by the authors, 
is clearly defined in the paper as the bending moment-to-
shear ratio M/V or the distance from the maximum-to-zero 
bending moment. The discussers appear to use an estimate of 
the internal flexural lever arm to arrive at a nonsensical value 
for z. The actual values of z will never be that small and will 
often be 10 times larger.

4. Equation (13) was discussed in the paper and was 
compared with the nonlinear analysis results in Fig. 7(c).*
Equation (13) does not predict the nonlinear analysis results 
very well because it does not account for the level of axial 
compression force. Presumably, the impetus for combining 
Eq. (13) with the authors’ proposed Eq. (9) is to account for 
the axial compression without the parameter z. The most 
appropriate way to eliminate z is to estimate the relationship 
between z = M/V and wall height hw. As described in the paper, 
Eq. (7) was developed by assuming z = hw; however, a more 
refined estimate can easily be made. If the hinging at the base 
of a shear wall is due to a first-mode distribution of forces, 
the ratio M/V at the base of the wall will be approximately 
0.7hw. This value of z would be appropriate for flexural walls 
in lower-height buildings (for example, 10 stories tall). The 
maximum curvatures at the base of a shear wall in a taller 
building (for example, 30 stories tall) are strongly influenced 
by higher modes, such as the second mode; thus, a lower 
value of z should be used (for example, 0.4hw). The need to 
use a range of z/hw values for different-height buildings is why 
Eq. (9) was not simplified, as suggested by the discussers.
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*Editor’s note: For convenience, below is the corrected figure as provided by the 
author. The corrected figure has been replaced in the PDF version of the original paper, 
which is available online at www.concrete.org.

Fig. 7—Comparison of lp/lw determined from nonlinear finite element analysis and 
simplified procedures.
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shear deformation is not evenly distributed. It varies along 
the wall height, and the magnitude of the shear deformation 
depends not only on the shear force but also on the inelastic 
flexural deformations. 

The discussers wonder how the axial strains were 
captured in the tests. Were they captured by strain gauges 
or by the Demec measurements at the side surface of the 
wall? The axial strains illustrated by the gray shaded areas 
do not distribute uniformly across the cross sections of the 
U-shaped wall along the wall height, even at a place far 
beyond the plastic hinge region, as it appears. Because the 
axial load was kept the same during the tests, the developed 
axial strains should contribute by the lateral force. It is not 
clearly explained and understood that the west flange has 
a very small axial strain (tensile strain?), whereas the east 
flange develops a larger axial strain (compressive strain?). At 
the lower section near the plastic region, however, both the 
west and east flanges were subjected to the (compressive) 
axial strain but with different magnitudes. 

The cross sections of the U-shaped wall do not remain 
plane at the deflection ductility of 3.0 or even less. The 
axial strain distributions likely suggest that the U-shaped 
wall distorts warping. It is also not clear whether the lateral 
force parallel to the web acted through the shear center of the 
U-shaped section. Otherwise, the shear deformation contrib-
uted from the twisting force would be included. 

Can the authors clarify whether similar distortions and 
strains occurred in the other rectangular section RC walls?

SHEAR-TO-FLEXURAL DISPLACEMENT RATIOS
It has been verified that the response of low-aspect-ratio 

walls differs significantly from the response of RC walls 
with aspect ratios over 2.0.36 The shear force that corre-
sponds to diagonal cracking in a low-aspect-ratio wall has 
a lower value than the shear force that corresponds to flex-
ural cracking, whereas slender RC walls—for example, with 
aspect ratios greater than 2.0 or 3.0—behave in a ductile 
flexural mode other than shear failure when loaded beyond 
the elastic limit.

Figure 6 shows the variation of ∆s/∆f ratios with top drift 
for cantilever RC walls tested under cyclic loading. It appears 
that the walls with shear-controlled behavior (PCA Phases I 
and II) developed a drift ratio of 3%, whereas the capacity-
designed RC walls11 developed less drift. Axial load should 
contribute to improve the ductile performance of shear walls. 
The shear deformation and associated stiffness degradation 
develop progressively as inelastic cyclic rotations are applied 
to a hinge zone. Because a drift ratio of 3% is a very large 
value of interstory deformation, it will typically accompany 
a severe drop in the load resistance of the structure. Which 
shear-to-flexural displacement ratios are expected at a typical, 
accepted drift ratio—say, 1% or even less?

The shear-to-flexural displacement ratios vary consid-
erably between the walls. As the ratio of shear-to-flexural 
displacement remains approximately constant over the entire 
ductility range in the RC walls governed by flexure and with 

The discussers appreciate the authors’ comprehensive 
work to analyze and evaluate the shear deformations in 
rectangular and nonrectangular reinforced concrete (RC) 
walls derived from the available quasi-static cyclic tests. 
The significance of the development of shear deforma-
tion in the plastic hinge zones is analyzed and assessed. A 
simplified estimation of the expected shear deformations 
in walls controlled by flexure was proposed, which could 
be a supplement to deformation computation using normal 
inelastic beam elements. Some findings are interesting to the 
discussers and worthy of further discussion.

SHEAR MECHANISMS
Whereas flexural members are subjected to inelastic 

reversing, cyclic rotations’ shear deformation may be 
expected to develop in the plastic hinge zone, which leads 
to a large part of the stiffness degradation.34,35 For calcula-
tion of the top displacement that corresponds to flexural 
yielding, the deformation in the web-shear mechanism 
should also be considered, together with the deformation 
in the flexural mechanism.

In RC shear walls subjected to seismic loads, the flexural 
mechanism—both web shear and sliding shear—would be 
activated. These two shear deformations have high values, 
even in the case where the structural elements are designed 
to exhibit flexural behavior. It was found that in shear walls 
with a low aspect ratio, sliding shear deformations appear 
at the base plastic hinge, even in the case where the flexural 
behavior initially predominates the response. The displace-
ment at the top of the walls due to the deformation of the 
sliding shear mechanism at the base of these walls was found 
to be significantly increased after the displacement ductility 
reached 2.5.36 Hence, for the calculation of the top displace-
ment ductility, the deformation of all load-resisting mecha-
nisms, such as the flexural and shear mechanisms of the two, 
should be taken into account.

Sliding shear displacements were not considered for the 
typical wall designs in the paper. It is not clear if the typical 
design was adopted for all walls studied or just for the 
U-shaped walls. The aspect ratio of the shear walls varies 
from 2.0 to 4.0 and no special joint detailing is illustrated. 
Can the authors demonstrate what detailing or criterion was 
used for these typical walls, where the sliding shear defor-
mation can be neglected? 

For the calculation of the displacement ductility, the 
contribution of the shear mechanisms to the top displace-
ment should be added to the inelastic deformations after 
yield. Does the ductility demand adopted in the analysis 
include the contribution of the shear deformation? 

AXIAL STRAINS’ DISTRIBUTION OVER  
CROSS SECTION

Figure 4 shows the distribution of shear and axial strains 
for U-shaped Wall TUA at a certain ductility level when the 
lateral loads are exerted parallel to the web (Position A). It 
appears that although the shear force is kept the same, the 
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a stable shear-transfer mechanism, a simple model for esti-
mating the ∆s/∆f ratios was proposed. In the case of a wall 
with a degrading shear-transfer mechanism, however, the 
shear-to-flexural displacement ratio increases with ductility 
demand and ∆s/∆f is also strongly dependent on the loading 
history. It would be interesting to develop a simple rule or 
have a criterion to distinguish between these two differently 
behaving walls in design practice. 
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AUTHORS’ CLOSURE
The authors thank the discussers for their interest in the paper 

on shear deformations of slender RC walls. The issues raised 
will be commented on in the order presented in the discussion.

SHEAR MECHANISMS
1. The discussers state that the top displacement that corre-

sponds to flexural yielding should also consider the shear 
deformation. The authors agree with the discussers on this 
point. The computation of the yield displacement was not 
a subject of the paper, however, but is covered elsewhere.37

2. The discussers point out the importance of sliding 
deformations for squat walls. For slender walls, which are 
the subject of the paper, the authors’ own experimental 
results7,11,13 have, however, shown that sliding deformations 
constitute only a relatively minor part of the total deforma-
tions. For the U-shaped walls, for example, the sliding defor-
mations were measured at the base of the web and flanges
and the sliding displacements contributed between 2 to 5% 
to the total top displacements.7 The shear deformations 
in the ∆s/∆f ratio comprise both the shear deformations 
of the wall and the sliding displacements along the joint 
between the wall and foundation. The authors agree with 
the discussers that the design for sliding shear resistance 
requires additional research and found that some design 
guidelines for sliding shear can lead to very conserva-
tive designs requiring diagonal reinforcement.7 None of 
the walls that were included in the database of the paper, 
however, featured diagonal reinforcement. 

3. The discussers wonder whether the ductility demand 
adopted in the analysis includes shear deformations. The 
displacement ductility µ was computed for total deforma-
tions, which is standard practice—that is, it included flexural 
and shear deformations. 

AXIAL STRAINS’ DISTRIBUTION OVER  
CROSS SECTION

1. The discussers note that the shear deformations are not 
only related to the shear force but also vary over the height 
of the wall. This is correct and was discussed at length in 
the paper. The shear deformations are, for example, also a 
function of the axial strains caused by flexural deformations, 
which are not constant over the height of the wall. 

2. The discussers wonder how the axial strains shown 
in Fig. 4(a) were captured in the tests. Similar to the shear 
strains, the axial strains were obtained from Demec measure-
ments (refer to the legend in Fig. 4(a)).

3. The discussers observe that the axial strains are not 
uniformly distributed over the wall section, particularly 
above the plastic hinge zone. The authors assume that the 
discussers expected a linear distribution of strains. The 
photos of the U-shaped test7 units show that the crack spacing 
in the upper part of the wall was larger than the base length 
of the vertical Demec measurements (200 mm [7.87 in.]). 
For this reason, the Demec measurements do not result in 
linear strain profiles. 

4. The discussers wonder about the axial strain distribution 
shown in Fig. 4(a). The tensile axial strains are plotted above 
the line representing the midheight of the Demec measure-
ment length, whereas the compression strains are plotted 
below this line. At Position A (Fig. 1(b)), the compression 
zone lies in the west flange. It should be noted, however, that 
the compression zone depth is smaller than the flange thick-
ness. Because the Demec measurements were taken on the 
inside faces of the wall, the axial strains of the west flange at 
Position A are also positive but, of course, are considerably 
smaller than the axial strains in the east flange. 

5. The discussers state that it does not become clear whether 
the actuator force parallel to the web acted through the shear 
center of the U-shaped section. The purpose of this paper 
was not to explain in detail the test setup for the U-shaped 
wall tests—the test setup, loading history, boundary condi-
tion, and so on are published elsewhere.7 It is recalled herein, 
however, that twisting of the top of the U-shaped wall was 
prevented throughout the test, with the only exception 
of selected load steps, where the torsional stiffness of the 
wall was explicitly investigated. The shear center of an RC 
U-shaped wall subjected to inelastic deformations is not at a 
constant distance to the web. With increasing inelastic defor-
mations, the shear center moves closer to the web.7

SHEAR-TO-FLEXURAL DISPLACEMENT RATIOS
1. The discussers state that “slender RC walls…behave 

in a ductile flexural mode other than shear failure, when 
loaded beyond the elastic limit.” The authors disagree with 
this statement and point out that slender RC walls can also 
fail in shear.

2. The discussers wonder what ∆s/∆f ratio is expected at 
drift ratios of 1% or less. The authors point out that the ques-
tion is answered by Fig. 6, which shows the ∆s/∆f ratios for 
drift values between 0.2% and failure. Moreover, an impor-
tant finding of the paper is that “for walls forming a flex-
ural hinge and a stable shear-transfer mechanism, the ratio 
of shear-to-flexural displacement remains approximately 
constant over the entire ductility range once the walls have 
reached their nominal strength” (refer to the conclusions 
of the paper). Equation (8) for estimating the ∆s/∆f ratio is 
therefore applicable to the entire ductility range. 

3. The discussers propose the development of a simple rule 
for differentiating between walls that are failing in flexure 
and walls that are failing in shear. The purpose of the paper 
was not to develop new equations for the flexural and shear 
resistance of RC walls but instead to study the deformation 
components of slender RC walls. Strength equations that 
allow for the estimation of whether a flexural or shear failure 
occurs are included in all structural design codes.
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