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Extended Tension Chord Model for Boundary 
Elements of RC Walls Accounting for Anchorage 
Slip and Lap Splices Presence
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Abstract 

This paper presents a mechanical model for the simulation of reinforced concrete (RC) wall boundary elements with 
lap splices, which builds on the tension chord model. The model is composed of an assembly of components, each 
one accounting for a different source of deformation. Namely: (i) an anchorage-slip element accounting for the strain 
penetration of the longitudinal reinforcement into the foundation; (ii) a basic tension chord element evaluating the 
response outside the lap splice zone; and (iii) a lap splice element describing the behaviour within the lap splice 
region. For an imposed global displacement, the model provides the steel and concrete stress and strain distribu-
tions, the crack distribution and opening, as well as the global resisting axial force. For spliced members, the ultimate 
displacement is computed through a semi-empirical relationship providing the average lap splice strain at failure. Vali-
dation is carried out against a series of uniaxial cyclic tests on RC wall boundary elements featuring both continuous 
and spliced reinforcement; different lap splice lengths and confining reinforcement are considered. Overall, a good 
match is obtained between numerical and experimental results in terms of crack width, rebar strain distribution along 
the splices and ultimate displacement.
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1  Introduction
Experimental tests on reinforced concrete (RC) walls 
have shown that the presence of lap splices may lead to a 
significant reduction of the member strength and ductil-
ity capacity (Almeida et  al. 2017). The behaviour of lap 
splices is influenced by several factors, among which lap 
splice length (ls) and confining reinforcement play a dom-
inant role. Namely, short and poorly confined lap splices 
located in regions where inelastic deformations are 
largest (i.e. plastic hinges) may induce failure of the RC 
wall prior to yielding of the longitudinal reinforcement. 
Longer and more confined lap splices may allow the wall 

to develop its flexural strength, however a decrease in the 
deformation capacity of the structural member is often 
still observed. Finally, long and adequately confined lap 
splices will relocate the plastic hinge above the spliced 
zone, where the deformation capacity of the flexural 
hinge is limited by rupture of the reinforcement or crush-
ing of the concrete. In all cases, damage typically starts at 
the wall edges (boundary elements) where the deforma-
tion demand is highest (Tarquini et al. 2017), which are 
also the regions first attaining failure.

Most studies in the past focused on the strength of lap 
splices (e.g. Orangun et al. 1977; Zuo and Darwin 2000) 
while significantly less research is available concerning 
their deformation capacity. Recently, based on an experi-
mental programme on RC wall boundary elements, Tar-
quini et al. (2019) proposed an expression to estimate the 
average strain at failure of lap splices as a function of the 
lap splice length, confining reinforcement, and casting 
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position. Such expression allows estimating the defor-
mation capacity of RC wall boundary elements with lap 
splices.

Past mechanical models for lap splices aimed at the 
characterization of their strength capacity (Priestley et al. 
1996; Canbay and Frosch 2005). To the authors knowl-
edge, the analytical model proposed by Tastani et  al. 
(2015) is the only available in the literature describing the 
state of bond along spliced rebars, which can be used to 
predict the force–displacement response of lap splices. 
However, their approach is limited to the elastic response 
of the reinforcement bars and therefore only applicable 
to describe the behaviour of very short lap splice lengths 
(where failure will occur before any inelasticity develops 
in the rebars).

The present work proposes a mechanical model for 
the simulation of RC wall boundary elements with lap 
splices. It represents an extension of the tension chord 
model (Marti et  al. 1998), reviewed in Sect.  2, which 
adopts the fundamental hypothesis on the constitutive 
materials (steel and concrete) and bond–slip laws. The 
model is constituted by an assembly of components, con-
nected in series, which discretize the structural member. 
The three components, described in Sect.  3 are: (i) the 
anchorage-slip element; (ii) the basic tension chord ele-
ment; and (iii) the lap splice element. The solution proce-
dure, which concludes the same section, allows to obtain 
for an imposed global displacement: the steel and con-
crete stress and strain distributions along the boundary 
element, crack location and width, and the total applied 
axial force. Moreover, the equation proposed by Tarquini 
et al. (2019) for the lap splice deformation capacity can be 
directly employed in order to determine the failure of the 
spliced RC boundary element. The validation of the pro-
posed model is carried out in Sect. 4 in terms of force–
displacement, crack widths, and spliced rebar strains. 
Conclusions are drawn in Sect. 5.

2 � Tension Chord Model
The tension chord model was originally developed as a 
simplified method for the determination of the rotation 
capacity of flexural plastic hinges in reinforced concrete 
girders (Sigrist and Marti 1994; Sigrist 1995). Later, it was 
extended to plane stress analysis problems (Kaufmann 
1998; Kaufmann and Marti 1998) and to investigate the 
deformation capacity of prestressed and non-prestressed 
RC members (Alvarez 1998). It proved particularly use-
ful in addressing problems of cracking, tension stiffening, 
and minimum reinforcement in RC members subjected 
to uniaxial loading (Marti et  al. 1998). In the follow-
ing paragraphs, the main assumptions and theoretical 
aspects underlying the tension chord model are briefly 
summarized.

Considering the tension chord element of Fig.  1a, the 
equilibrium equations for an infinitesimal length dx of 
concrete and steel volumes can be written as (see Fig. 1b):

where σc and σs are the concrete and steel stresses, τb is 
the bond stress, φl is the longitudinal rebar diameter, At is 
the gross sectional area, and ρl = As/At is the longitudinal 
reinforcement ratio, where As = πφ2

l /4 is the steel area.
Strain–displacement relations provide εs = dus/dx and 

εc = duc/dx , where us and uc are the steel and concrete 
displacements, as shown Fig. 1c, and εs and εc are the cor-
responding strains. From compatibility considerations 
(Fig. 1c), the steel–concrete slip δ can be expressed as the 
difference between the steel and concrete displacements:

(1)
dσc

dx
= −

τb · π · φl

At · (1− ρl)

(2)
dσs

dx
=

4 · τb

φl

(3)δ = us − uc

a b c

Fig. 1  After (Marti et al. 1998): a Sketch of a basic tension chord element, i.e. the portion of tension chord between two cracks. b Concrete and steel 
equilibrium for an infinitesimal length dx. c Compatibility requirements.
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Assuming a linear and bilinear stress–strain law for the 
concrete and steel in tension (Fig.  2a, b), the following 
second order differential equation is obtained by com-
bining the previous equations and using the chain rule of 
differentiation:

where dσs/dx and Ec are the steel and concrete tangent 
stiffness. Before steel yielding dσs/dx = Es , while after 
yielding dσs/dx = Esh , which stands for the post-yield 
steel stiffness.

Equation (4) can be integrated if the bond–slip (τb–δ) 
relationship is known. In the tension chord model, the 
latter is assumed to be stepped, rigid-perfectly-plastic 
(Fig. 2c): the bond stress is constant (τb0) up to reinforce-
ment yielding, after which it halves (τb1 = τb0/2). This 
assumption for the τb–δ law is particularly convenient 
as it allows the uncoupling of the bond stress from the 
slip of the reinforcing bar. In the portion between two 
consecutive cracks of the tension chord (herein referred 
as basic tension chord element), the steel stress distri-
bution can thus be derived from the equilibrium condi-
tions alone, i.e. without the need to resort to complex 
numerical integration of the above second order differ-
ential equation. As a consequence, the concrete stress, 
concrete strain, and steel strain distributions can also be 
obtained, allowing the determination of the crack width 
and basic tension chord elongation. In the present work, 

(4)
d2δ

dx2
=

4 · τb

dσs
/

dx · φl
+

τb · π · φl

At · Ec · (1− ρl)

as suggested by Marti et al. (1998), it is assumed τb0 = 2·fct 
and τb1 = fct, where fct is the tensile concrete strength. The 
latter can be computed as a fraction of the concrete cylin-
der strength f′c; the calculations presented herein assume 
fct = 0.3·f′c2/3 (Sigrist and Marti 1994; Sigrist 1995).

2.1 � Evolution of Deformation in a Tension Chord Subjected 
to Increasing Displacement

Consider a tension chord of total length L0 (Fig. 3a) sub-
jected to an increasing imposed tensile displacement Δ. 
A qualitative force–displacement response is depicted 
in Fig.  3b. Before first cracking, no relative slip occurs 
between the longitudinal steel and concrete, which thus 
share the same state of deformation, corresponding to 
state A in Fig. 3. The equivalent member axial stiffness is 
computed as the sum of the stiffness of the two materials:

where Ac = At − As is the concrete area. The first crack 
occurs when the concrete reaches the tensile strength 
fct (state B in Fig.  3), which takes place at the following 
applied force:

At the first forming crack the concrete stress and strain 
are null (state C in Fig. 3). All the applied force is taken by 

(5)
(EA)equiv.

L0
=

(Ec · Ac + Es · As)

L0

(6)Nfc =
(EA)equiv. · fct

Ec

a b c

Fig. 2  Constitutive relations employed in the extended tension chord model: a Bilinear steel stress–strain law. b Concrete tensile stress–strain 
behaviour. c Steel–concrete bond–slip relationship.
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the longitudinal reinforcement and the steel stress passes 
from a pre-crack stress σs,B to a post-crack stress σs,C. 
Assuming that the rebar remains elastic, which is typi-
cally the case for common ranges of longitudinal rein-
forcement ratios, they are computed as:

For larger imposed deformations, cracks will open one 
after the other along the tension chord (state D in Fig. 3 
refers to the opening of the second crack) up until crack 
stabilization. The latter corresponds to the situation in 
which an increase in the imposed deformation results in 
simple opening of existing cracks; i.e. no new cracks are 
forming as shown by states E, F and G in Fig. 3. The dif-
ference between the rebar force in the post-crack phase, 
σs,Cπφ

2
l /4 , and the rebar force in the pre-crack state, 

σs,Bπφ
2
l /4 , is transferred through bond action along a 

rebar surface πφl lb , which allows to express the develop-
ment length lb as (see Fig. 3a):

Two contiguous cracks cannot open at a distance greater 
than 2 lb, for in such case a region between these cracks 

(7)σs,B =
Es · fct

Ec

(8)σs,C =
Nfc

As

(9)lb =
φl ·

(

σs,C − σs,B
)

4 · τb0
=

φl · fct · (1− ρl)

4 · ρl · τb0

would exist where the concrete stress would be larger 
than the concrete tensile strength fct. On the other hand, 
crack spacing srm cannot be smaller than lb, for it would 
be impossible to develop concrete stress equal to fct, even 
assuming a completely asymmetrical contribution of bond 
stress towards one of the sides. Although several expres-
sions have been proposed in the literature to evaluate the 
average crack spacing srm (CEB 1978; FIP-CEB 1990; EN 
1992-Part 1-1 2004; FIB 2013), in this paper the interme-
diate value of srm = 1.5·lb is assumed, which was judged to 
provide the compromise between simplicity (limited num-
ber of parameters) and accuracy (best final agreement with 
the experimental results).

The maximum force carried by the concrete, Nc,max, 
depends on the value of srm and can be computed as:

In between two cracks, the steel and concrete stress 
and strain distributions can be obtained by solving ana-
lytically Eq.  (4). The crack width w is then calculated as 
the integral along srm of the difference between the steel 
and concrete strains—Eq.  (11)—while the integral of the 
steel strains gives the total elongation of the basic tension 
chord—Eq. (12).

(10)Nc,max =
srm

2
· τb0 · φl · π

(11)w =

srm
2

∫

−
srm
2

εs − εcdx

a b

Fig. 3  Tension chord subjected to increasing imposed displacements: a Force–displacement response. b Qualitative steel and concrete strain 
distributions.
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For the assumed material and bond–slip relationships, 
in-between cracks the steel and concrete stress and strain 
distributions remain linear up to yielding of the longitu-
dinal reinforcement (state G in Fig. 3). After yielding, the 
reduction of the steel tangent stiffness (from Es to Esh) 
and bond stress (from τb0  to τb1) causes the shift from 
linear to bilinear stress and strain distributions, as repre-
sented in state H of Fig. 3a.

3 � Mechanical Model for Boundary Elements of RC 
Walls with Lap Splices

The mechanical model proposed in the following is 
developed to simulate the response of RC wall bound-
ary elements with lap splices, subjected to a uniaxial ten-
sion–compression loading. It is an extension of the classical 
tension chord model (Marti et  al. 1998) described in the 
previous section. The basic tension chord element is used 
in series with an anchorage-slip element and a newly devel-
oped lap-splice element; they are described in the next three 
Sects. 3.1 to 3.3. Section 3.4 deals instead with the iterative 
solution strategy employed to obtain local deformations and 
forces for an imposed global displacement.

3.1 � Anchorage‑Slip Element
The deformation of RC walls due to strain penetration of 
the longitudinal reinforcement in the foundation can rep-
resent an important contribution to the total member dis-
placement (Zhao and Sritharan 2007; Sousa et  al. 2018). 
The anchorage-slip element presented herein allows to 
estimate the anchorage-slip displacement Δanc as well as to 
determine the steel and concrete stress and strain distribu-
tions along the anchorage length lanc. The input parameter 
is the steel strain at the loaded end, εac, where the subscript 
ac stands for ‘at crack’ as it corresponds to the location of 
the RC wall-foundation interface crack. It is assumed that 
the rebar capacity cannot crack the foundation and that 
concrete strains are negligible compared to steel strains, 
which is typically the case. The elongation Δanc can again 
be computed as the integral of the steel strains:

Building on the material and bond assumptions described 
in the previous section, analytical expressions for Δanc can 
be derived, which depend on the anchorage type (straight or 
bent rebars), anchorage length, and imposed free-end defor-
mation εac. For a review of the different cases, the reader is 
referred to Feng and Xu (2018), where a full description of 

(12)�TC =

srm
2

∫

−
srm
2

εsdx

(13)�anc =

∫

lanc

εsdx

the equations for the calculation of Δanc can be found. The 
current work only considers the anchorage configuration 
featured by the test units used to carry out the model valida-
tion in Sect. 4; i.e., rebars bent inside the foundation and an 
anchorage length lanc longer than the development length 
required to achieve the ultimate steel stress (lult). For bent 
rebars, lanc can be evaluated as a function of the straight 
portion of the anchored length l0 (Sezen and Setzler 2008):

while lult, composed by elastic and plastic components (ly 
and lp respectively), can be computed as:

where fy and fu are the steel yield and ultimate strength. 
The analytical expression to calculate the slip Δanc in case 
of lanc > lult is given by the following equation:

where lac is the development rebar length required to 
attain the strain at crack εac, and is computed as:

The previous expressions underline that pre- and post-
yielding cases are distinguished; for each case, a sketch 
of the qualitative steel stress and strain distributions is 
included in Fig. 4.

The upper and lower domain boundaries of applicabil-
ity for Eqs. (16) and (17) are defined by the minimum steel 
strain required to have crack stabilization (εcs, see Sect. 3.4 
for its calculation) and the ultimate steel strain (εult), respec-
tively. In fact, for εac< εcs the RC wall boundary element 
remains uncracked, implying Δanc = 0. On the other hand, 
steel rupture will occur for εac> εult, thus resulting in the total 
loss of the member axial load capacity (N = 0).

3.2 � Basic Tension Chord Element
As introduced in the previous section, the basic tension 
chord element represents the portion of a tension chord 
enclosed between two consecutive cracks (spaced srm 
apart). For an arbitrary value of εcs < εac < εult, where εac 
is the steel strain at crack, the steel and concrete stress 
and strain distributions can be determined by equilib-
rium considerations. The crack width as well as the total 
chord elongation are obtained by applying Eqs. (11) and 
(12), respectively. Three cases can be distinguished: (i) 
εac < εy; (ii) εac > εy and lac,p < srm/2; and (iii) εac > εy and 

(14)lanc = l0 + 5 · φl

(15)lult = ly + lp =
fy · φl

4 · τb0
+

(

fu − fy
)

· φl

4 · τb1

(16)

�anc =

{ εac
2

· lac for εac < εy
εy
2
· ly +

εy+εac
2

·
(

lac − ly
)

for εac > εy

(17)lac =

{

εac ·Es·φl
4·τb0

for εac < εy
fy·φl
4·τb0

+
(εac−εy)·Esh·φl

4·τb1
for εac > εy
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lac,p > srm/2, where lac,p is the length required to develop 
the plastic strain εp = εac - εy, computed as:

For each case, the material stress and strain distribu-
tion is depicted in Fig. 5, while the expression for calcu-
lating the basic chord elongation ΔTC and the crack width 
w are provided by Eqs. (19) and (20), obtained by solving 
Eqs. (11) and (12):

(18)lac,p =
As · Esh ·

(

εac − εy
)

τb1 · π · φl (19)

�TC =















�

εac −
Nc,max

2·As ·Es

�

· srm for case(i)

εac · lac,p + εy ·
srm
2

+ εsrm/2 ·
�

srm
2

− lac,p
�

for case(ii)
�

εac −
Nc,max,p

2·As ·Esh

�

· srm for case(iii)

(20)

w =















�

εac −
Nc,max

2·As ·Es
−

Nc,max

2·Ac ·Ec

�

· srm for case(i)

�
case(ii)
TC − εc,y ·

srm
2

− εc,srm/2 ·
�

srm
2

− lac,p
�

for case(ii)
�

εac −
Nc,max,p

2·As ·Esh
−

Nc,max,p

2·Ac ·Ec

�

· srm for case(iii)

a b c

Fig. 4  Anchorage-slip element for bent anchored bars with lanc> lult: a Sketch of the anchorage detail. b Qualitative steel strain profiles. c Qualitative 
steel stress profiles.

a b c

Fig. 5  Basic tension chord element: a Sketch. b Qualitative steel and concrete strain profile. c Qualitative steel and concrete stress profile.
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where εsrm/2 and εc,srm/2 are the steel and concrete strains 
evaluated at srm/2, Eqs. (21) and (22); εc,y is the concrete 
strain in correspondence of the steel yield point, Eq. (23); 
and Nc,max,p is the maximum concrete force occurring at 
srm/2 when the steel is in the post-yield state, Eq. (24).

3.3 � Lap‑Splice Element
As outlined above, the strength and/or deforma-
tion capacity of RC walls may be sensibly reduced by 
the presence of lap splices above the foundation level, 
where the seismic demand is maximum. Adequate 
detailing, i.e. providing appropriate lap-splice length 
and confining reinforcement, is crucial in order to 
attain the desired member ductility. The component 
presented in this subsection allows to account for the 
presence of lap splices in RC wall boundary elements 
and to estimate: (i) the steel strain distribution in the 
pair of spliced rebars; (ii) the crack width along the lap-
splice length as well as the width contribution to the 

(21)εsrm/2 = εy −
τb0 · π · φl ·

(

srm
2

− lac,p
)

As · Es

(22)εc,srm/2 = εc,y +
τb0 · π · φl ·

(

srm
2

− lac,p
)

Ac · Ec

(23)εc,y =
τb1 · π · φl · lac,p

Ac · Ec

(24)Nc,max,p = σc,max,p · Ac =
srm

2
· τb1 · φl · π

splice-end cracks originating from lap-splice deforma-
tion; (iii) the total lap-splice displacement and the fail-
ure point.

This component builds on the same hypothesis regard-
ing material and bond behaviour assumed for the tension 
chord model described in Sect.  2. Once crack stabiliza-
tion is attained along the lap-splice length (Fig.  6a), the 
resisting force is transferred from the anchored to the 
free end (unloaded) rebar through concrete bond. It is 
herein assumed that the concrete remains undeformed 
while transferring the force from one bar to another. 
Although the applied tensile load is partly resisted by the 
concrete, causing the formation of splitting cracks, the 
previous simplification represents a reasonable approxi-
mation up to the point of lap splice failure. In fact, as 
pointed out by Tastani et al. (2015), neglecting the con-
crete strain contribution does not result in large model 
errors since the maximum tensile strain carried by nor-
mal strength-concrete up to tensile failure is less than 5% 
of the yield strain of the reinforcement. Nevertheless, this 
hypothesis implies a slight overestimation of the crack 
width as the latter is computed from the steel deforma-
tions alone, i.e. the tension stiffening effect due to con-
crete strains is ignored. A qualitative sketch of the steel 
stress and strain distribution for the couple of spliced 
rebars is represented in Fig. 6b, c for two different levels 
of strain at the interface crack εac (pre- and post-yielding). 
From the top interface crack downwards, the steel stress 
is progressively transferred from the top-anchored to the 
bottom-anchored rebar. The stress transfer stops when 
equilibrium is reached with the two rebars attaining the 
same force level. An analogous if mirrored physical phe-
nomenon occurs on the bottom half of the lap splice.

a b c

Fig. 6  Lap-splice element: a Sketch. b Qualitative steel strain profile. c Qualitative steel stress profile.
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The crack spacing srm within the lap-splice zone is 
assumed the same as outside, which is supported by 
experimental observations. The width of the cracks 
located within the lap-splice region (for instance wlap,1 
and wlap,2 in Fig. 6a) is computed by integrating, along the 
corresponding influence length (e.g. l1 and l2 in Fig. 6a), 
the envelope (i.e., the maximum) of the strains along the 
spliced rebars. For a given crack, the influence length is 
taken as the sum of the two half distances from the con-
tiguous upper and lower cracks. Similarly, the integral of 
the strain envelopes along ltop and lbot (see Fig. 6a) provide 
the portion of the top and bottom interface crack widths 
due to deformations originating within the lap splice 
region. The total width of these cracks is then obtained 
by summing up the contributions due to deformations 
occurring within and outside the lap splice region (the 
next subsection provides further details). The steel strain 
envelope is considered for the calculation of the crack 
width because, along the lapped zone, the spliced rebars 
are in general not equally stressed; the more stressed bar 
governs crack width (Tastani et  al. 2015). Closed-form 
expressions for the calculation of the splice-internal crack 
widths and the contribution to the interface cracks given 
by deformations within the lap-splice region are relatively 
complicated to obtain as they depend on a large number 
of variables. Therefore, in the present study these widths 
are computed numerically.

The total lap splice displacement (Δls) is calculated as 
the integral of the steel strain envelopes along the entire 
lap splice length: the expressions for both the elastic 
(εac < εy) and post-yield (εac > εy) cases are as follows:

where εeqF, Eq. (26), is the strain of both top and bottom 
anchored rebars when they share the same force, and 
ly,eqF is the distance between the yield point and the first 
point in which εeqF is reached, see Fig. 6b.

Based on experimental data on uniaxial cyclic tests on 
spliced RC members, Tarquini et  al. (2019) determined 
an expression for the average strain at lap splices fail-
ure (εls). The latter, which depends on lap splice length, 
amount of confinement reinforcement and casting 
position, is used in the proposed model to define the 

(25)�ls =

{

1

4
εac(2 · ls − lac) εac < εy

(

εac − εy
)

· lac,p +
(

εy + εeqF
)

· ly,eqF + 2 · εeqF ·

(

ls
2
− lac,p − ly,eqF

)

εac > εy

(26)εeqF =
Esh ·

(

εac − εy
)

+ Es · εy

2 · Es

(27)ly,eqF =
As ·

(

Es · εy − Esh ·
(

εac − εy
))

2 · τb0 · π · φl

deformation capacity of lap splices. The ultimate lap-
splice displacement (Δls,ult) is therefore straightforwardly 
obtained by multiplying εls by the nominal lap-splice 
length ls; failure of the lap-splice element is assumed to 
take place at this point, with the complete loss of the 
axial load capacity. It is worth noticing that the above-
mentioned failure criterion typically precedes the attain-
ment of non-zero stress values at the lap splice free ends 
(lac > ls). In such a case, pull-out rather than lap splice 
failure might be expected.

3.4 � Model implementation: iterative procedure and failure 
criteria

The components described in the three previous subsec-
tions can be connected in series in order to simulate the 
response of RC wall boundary elements with lap splices 
subjected to increasing tensile loading. Figure  7a illus-
trates the assembly of an anchorage, lap splice, and sev-
eral basic tension chord elements, to which a global top 
displacement Δtot is imposed. Given the steel and con-
crete material properties, outputs of the model are the 
resisting axial force, crack spacing and widths (inside and 
outside the lap-splice region), steel and concrete strain 
distributions, and the ultimate displacement. Iterations 
are required to solve the nonlinear problem, unless global 
forces are imposed, wherein a straightforward non-itera-
tive solution is available. A flowchart depicting the steps 
involved in the iterative procedure is illustrated in Fig. 7b 
and discussed in the following paragraph.

Up to first cracking, perfect bond exists between steel 
and concrete, which therefore share the same strain:

where L0 represents the total length of the boundary ele-
ment (see Fig. 7a). First cracking occurs at a displacement 
level fctL0/Ec with Nfc given by Eq.  (6). Between first 
cracking and crack stabilization (identified by the sub-
script ‘cs’), cracks open one after the other with the axial 
force that is assumed constant and equal to N = Nfc. In 
reality, small force drops occur due to the stiffness reduc-
tion caused by each crack opening, as shown in Fig.  3. 
The displacement at crack stabilization Δcs is identified by 
a steel strain at crack equal to:

(28)εs = εc =
�tot

L0

(29)εcs =
Nfc

Es · As



Page 9 of 16Tarquini et al. Int J Concr Struct Mater            (2020) 14:2 

The above does not apply to cracks located within the 
lap-splice region where the steel area contributing to the 
axial stiffness is double. Such cracks open at an imposed 
axial force Nfc,lap > Nfc; however, for common longitudi-
nal reinforcement ratios the difference between the two 
forces is relatively small and can be neglected (e.g., for 
the case-study of Sect. 4, Nfc,lap = 140 kN while Nfc = 130 
kN).

For imposed displacements larger than Δcs, each com-
ponent of the boundary element (anchorage, lap splice, 
and basic tension chord) can be solved separately for 
a given strain at crack εac. This quantity is initially esti-
mated as εac = Δtot/L0 which is then used to compute 
the resulting total boundary element displacement. The 
latter, identified as Δcomput, is obtained by summing up 
the resulting displacement of each element, evaluated 
through Eqs. (16), (19), and (25). The computed displace-
ment Δcomput is then compared to the externally imposed 
Δtot: if their difference is smaller than a user-defined tol-
erance (in the following applications tol = Δtot/1000 is 
used), convergence is attained, otherwise an updated esti-
mate of εac is calculated (see Fig. 7b) and a new iteration 

is performed. At convergence, the steel/concrete stress/
strain distributions can be retrieved from each element, 
as well as the crack widths (see Fig. 7a). Finally, the total 
imposed axial force is calculated as:

Without a specific criterion defining the failure of the 
boundary element, the procedure above can be performed 
for any imposed displacement Δtot up to a strain at crack 
equal to the ultimate steel strain (εac = εult). The latter rep-
resents a reasonable failure criterion only in case of con-
tinuous reinforcement and monotonic tensile loading. In 
case of cyclic loading and continuous reinforcement, the 
ultimate steel strain will result in an overestimation of the 
member displacement capacity and a value of εs = 0.6  εult 
can be used (Priestley et  al. 2007). In case lap splices are 
also present, the attainment of the aforementioned ulti-
mate displacement of the lap splice element, Δls,ult, signals 
the member failure, which consists in the total and sudden 
loss of the axial load carrying capacity.

(30)

{

N = εac · Es · As εac < εy
N = εy · Es · As +

(

εac − εy
)

· Esh · As εac > εy

a b

Fig. 7  RC boundary element model: a Assembly of the components for a RC member featuring lap splice, anchorage, and multiple basic tension 
chord (TCi) elements. b Flowchart of the iterative procedure.
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4 � Validation of the Proposed Model
Results from a recently concluded experimental pro-
gramme on RC wall boundary elements with lap splices 
(Tarquini et  al. 2018) are used to validate the proposed 
mechanical model. The 24 test units (TUs), of which 22 
with lap splices and two reference units with continuous 
reinforcement, shared the same geometry, illustrated in 
Fig. 8. They differed in terms of lap-splice length, confin-
ing reinforcement and loading history, which constituted 
the variable parameters of the test programme. The test-
ing machine was a uniaxial press with a fixed top and a 
mobile bottom actuator to which the TUs were con-
nected by means of rigid steel profiles. The instrumenta-
tion included load-cells as well as LVDTs and LED grids 
to evaluate global and local displacement values. Namely, 
LEDs were also directly glued on the pair of spliced 
rebars, allowing a direct monitoring of rebar strains.

The same reinforcing steel was used for all the TUs. 
Although different castings were performed, the concrete 
showed a limited variability in the cylinder compressive 
strength f ’c. All details regarding material properties can 
be found in Tarquini et  al. (2018); Table  1 reports the 
material parameters relevant to the mechanical model 
that were used to run the analyses shown in the next two 
subsections.

4.1 � TU with Continuous Reinforcement
The mechanical model is compared in this section with 
the test unit LAP-C1 featuring continuous longitudinal 
reinforcement and a confinement reinforcement ratio 
ρt ≈ 0.3%. The experimental vs numerical force–dis-
placement curves are shown in Fig.  9a with grey and 
black solid lines, respectively. The applied axial force N 
is reported on the vertical axis while the total vertical 
displacement Δ is given on the horizontal axis. A black 

a b c

Fig. 8  Experimental programme used for model validation (Tarquini et al. 2018): a Photo of test unit LAP-P1 in test stand; Example of a 
reinforcement layout of (b) a TU with lap splices (LAP-P1); and (c) a TU with continuous reinforcement (LAP-C1).

Table 1  Material parameters used in the simulation, obtained from material tests (see Tarquini et al. 2018).

Material property f′c [MPa] fy [MPa] fu [MPa] Es [MPa] Esh [MPa] εult [%]

32 510 635 204,000 1430 9
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a b c

d e f

Fig. 9  Example of a test unit with continuous reinforcement (TU LAP-C1): a Experimental vs numerical force–displacement response. b Simulated 
steel strain profile. c Simulated steel and concrete force profiles. d Photo of crack pattern. e Numerical crack pattern obtained for different srm to lb 
ratios. f Experimental vs numerical crack width.
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dashed line indicates the displacement at which the 
experimental specimen failed, defined as the displace-
ment at which a loss of axial load capacity of 20% was 
observed. For LAP-C1, this occurred in compression, 
due to core concrete crushing. The numerical pushover 
curve reproduces satisfactorily the tensile experimental 
backbone curve. Namely, the stiffness evolution as well 
as the maximum force are well predicted. Due to the fail-
ure in compression of the specimen, no failure criterion 
was defined for the mechanical model, which thus does 
not show decay in strength. Three coloured dots identify 
post-cracking (Δ = 3 mm), plastic (Δ = 15 mm), and pre-
failure (Δ = 35 mm) states, which are used in the follow-
ing plots to compare local-level quantities.

Simulated steel and concrete strain distributions along 
the boundary element are depicted in Fig. 9b with solid 
and dashed lines, respectively. Steel strains were not 
directly measured in TUs with continuous reinforce-
ment and therefore a comparison between numerical 
and experimental data is not possible. The numerically 
obtained distributions are well established and have been 
presented in several studies on the tension chord model 
(e.g. Kaufmann 1998; Marti et al. 1998; Muttoni and Fer-
nandez 2010). Steel strains are maximum at crack loca-
tions, minimum midway between cracks, and increase 
from the post-cracked state A to the pre-failure state C. 
A similar trend can be observed for the steel force distri-
bution (Ns) illustrated in Fig. 9c; on the other hand, con-
crete forces (Nc) show an opposite behaviour with Nc = 0 
at crack and Nc = Nc,max midway between cracks. Fur-
thermore, due to the reduction in bond strength after the 
occurrence of reinforcement yielding, Nc between cracks 
decreases with the spread of inelasticity.

The discretization of the boundary element is shown 
in Fig. 9e and consists in two anchorage and seven basic 
tension chord elements, corresponding to a crack spacing 
srm = 1.5·lb. The same figure also includes, for compari-
son purposes, the minimum and maximum theoretical 
crack spacing (srm = lb and srm = 2·lb), whereas the real 
crack pattern observed during the test is reported in 
Fig. 9d.

Finally, experimental and numerical crack widths are 
compared, for the three levels of displacement A, B and C, 
in Fig. 9f. Experimental values, computed as displacement 
difference between markers located on the same vertical 
line, are represented with a dotted line, whereas numeri-
cal values are displayed in the form of bar plots at crack 
location. It is found that the model describes satisfactorily 
the experimental results for all considered displacement 
levels, concerning both cracks along the TU as well as 
foundation/top beam interface cracks. Namely, as it will 
be shown in Fig.  11b, the model error associated to the 
simulation of the average crack width is smaller than 5%.

4.2 � TUs with Lap Splices
In Fig. 10, results from the mechanical model are com-
pared against experimental data obtained from three 
TUs with lap splices differing in terms of both lap splice 
length (ls) and confining reinforcement ratio (ρt). In 
particular, LAP-P4 had the shortest lap-splice length, 
ls = 350 mm (25·Øl) and ρt ≈ 0.3%, followed by LAP-P16, 
ls = 560  mm (40·Øl) and ρt ≈ 0.2%, whereas the long-
est lap-splice length was part of LAP-P5, ls = 840  mm 
(60·Øl) and ρt ≈ 0.1%. Differently from the model used 
to simulate the TU with continuous reinforcement, the 
one used in the present subsection included a lap-splice 
element above the bottom anchorage element.

From shorter to longer lap splice lengths, the com-
parison in terms of global force–displacement is shown 
in in plots (a), (d) and (g). In all three cases, the numeri-
cal pushover follows satisfactorily the tensile backbone 
curve of the cyclic experimental results. Moreover, the 
ultimate displacement capacity is also rather well pre-
dicted (relative error below 20%); the numerical failure 
is triggered by the attainment of the ultimate lap-splice 
displacement. For each state (A, B, C) represented by 
a coloured dot in the force–displacement curves, plots 
(b), (e) and (h) display the numerical vs experimental 
crack width. A good match between the two quanti-
ties can be observed, the model being able to capture 
the crack evolution as well as the different openings 
of cracks within and outside the lap-splice region. 
Namely, the former are considerably smaller than the 
latter and the difference in crack width increases with 
the spread of inelasticity. The distribution of rebar steel 
strains along the lap splice length is also adequately 
simulated by the model. In plots (c), (f ) and (i), the 
bottom-anchored rebar of the spliced pair is considered 
for comparison (the top anchored rebar would show 
similar but mirrored results). A good fit is again appar-
ent for the three lap-splice lengths, which validates the 
model assumption of neglecting the concrete defor-
mations within the lap-splice region. No comparison 
could be performed close to the two splice-end cracks, 
where steel deformations are maximum, since no strain 
measure was available at that location. It should also be 
noted that the effects of cyclic steel strength degrada-
tion and cyclic bond strength degradation are not taken 
into account in the model, which can contribute to 
explain some of the differences observed with respect 
to the experimental results, namely between states B 
and C. However, in view of the overall good agreement, 
it is believed that these effects were relatively limited.

In order to further validate the proposed mechani-
cal model, the entire set of RC wall boundary elements 
tested by Tarquini et al. (2018) was simulated. The results 
are summarized in Fig.  11 in terms of relative error 
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a b c

d e f

g h i

Fig. 10  Examples of test units with spliced reinforcement: Experimental vs numerical comparison for TU LAP-P4 (ls = 25 Øl), LAP-P16 (ls = 40 Øl) and 
LAP-P5 (ls = 60 Øl): a, d, g Force–displacement response. b, e, h Crack width. c, f, i Steel strains within the lap-splice region for the bottom anchored 
rebar.
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concerning the prediction of: (a) the failure displace-
ment; (b) the average crack width outside the lap splice 
region; and (c) the average crack width within the lap 
splice region. The relative error η is expressed by the fol-
lowing equation:

where υnum and υexp represent the considered numerical 
and experimental quantities, respectively.

From Fig.  11a, it is apparent that the relative error 
between the experimental and numerical ultimate dis-
placement is smaller than 25%, for all specimens. Black 
dots are used to individuate the TUs depicted in Fig. 10 
(i.e., LAP-P4, LAP-P16 and LAP-P5) and to demonstrate 
that the good model performance was not restricted to 
those cases. A remark is due to the fact that the database 
used for the current validation is the same employed to 
calibrate the deformation capacity of lap splices (Tarquini 
et al. 2019), and therefore acceptable matches were more 
likely regarding the ultimate displacement. However, to 
the authors’ knowledge, no other experimental tests are 
available in the literature investigating the displacement 
capacity of lap splices. Moreover, the predictive equa-
tion proposed in Tarquini et al. (2019) was derived from 
the experimental data using a semi-empirical approach, 
i.e. including assumptions on the mechanical behaviour 
of the structural member (e.g., the contribution factor 
to the interface crack α = 0.5). The performed valida-
tion hence strengthens the validity of such hypotheses, 
moreover confirming the dependability of the adopted 
mechanical approach.

(31)η =
υnum − υexp

υexp

Figure  11b, c show the relative average crack width 
error, for cracks located outside and within the lap-
splice region, respectively. For each TU, the numerical 
and experimentally-measured crack widths of all cracks 
located in either of these two regions is computed and 
then averaged at each experimental peak tensile displace-
ment. Again, the TUs used for validation in Fig.  10 are 
depicted with black lines; the points corresponding to 
the states A, B, and C, at which the crack widths were 
compared, are reported with the same marker notation. 
Results for all other TUs are represented in grey. For 
both cracks located outside and within the lapped zone, 
an error ηw < 20% (approximately) can be observed for 
all TUs and displacement levels. Exception is made for 
cracks along the lap-splice zone and low imposed dis-
placements (Δtot < 3  mm), where the error can arrive to 
40%. This deviation can be partly attributed to the fact 
that experimental cracks, at such small tensile demands, 
may still evolve along the member (i.e. new cracks can 
open at different locations) while the points in which 
they are evaluated are fixed.

Finally, the relative contribution of the three model 
elements to the total ultimate displacement (at tensile 
failure) was computed. The results are plotted in Fig. 12, 
which shows that the different contributions do not vary 
significantly for the considered specimens. It represents 
approximately 20%, 60% and 20% for the anchorage, ten-
sion chord and lap splice elements respectively. It is also 
noted that the contribution from the anchorage region 
is fairly constant, which is expected since it does not 
depend on the lap splice length, transverse reinforcement 
or loading history.

a b c
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Fig. 11  Relative error for the simulation of all test units: a Ultimate element displacement. b Average crack width outside the lap-splice region. c 
Average crack width in the lap-splice region.
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5 � Conclusions
Reinforced concrete walls often have lap splices above 
the foundation level, where the expected seismic demand 
is maximum. A proper detailing of lap splices is of funda-
mental importance for the cyclic response of the struc-
tural member as it can result in a significant reduction 
of its strength and deformation capacity. Boundary ele-
ments represent the most strained region of the RC wall, 
and therefore the one where lap splice failure is triggered.

In this paper, a mechanical model for the simulation of 
RC wall boundary elements with lap splices is presented. 
It is an extension of the tension chord model for continu-
ous reinforcement. The model comprises three differ-
ent types of elements connected in series: an anchorage 
element accounting for the strain penetration of the 
reinforcement into the foundation, a lap-splice element 
describing the deformation occurring within the spliced 
region and a basic tension chord element modelling the 
response outside the lapped zone. The lap-splice ele-
ment is a novel contribution of the authors. It assumes 
that the force is transferred from the anchored to the free 
end (unloaded) rebar through concrete bond. It is further 
hypothesized that in the lap splice region the concrete 
transfers stresses from one rebar to the other but does not 
contribute significantly to the stiffness of the lap splice 
element (i.e. the tension stiffening effect is neglected). 
The model is highly versatile and allows any combination 
and number of the above-mentioned elements, the solu-
tion of which requires an iterative method. A new stable 
solution procedure is therefore proposed to solve the 
global nonlinear problem. The average lap splice strain at 
failure suggested by Tarquini et al. (2019) is herein used 

to determine the ultimate displacement of boundary ele-
ments with lap splices.

Finally, the model was validated against a set of 24 
tests on RC wall boundary elements with both con-
tinuous and spliced longitudinal reinforcement. Dif-
ferent lap-splice lengths and confining reinforcement 
were also considered. Comparisons were made in 
terms of force–displacement response, crack width and 
strain distribution along the pair of spliced rebars. In 
all cases, and despite the fact that cyclic steel strength 
degradation and cyclic bond strength degradation are 
not accounted for in the model, a good match is found 
between numerical and experimental results; relative 
errors regarding the ultimate displacement and crack 
widths are on average below 20%.

List of Symbols
Ac: concrete area; As: longitudinal reinforcement area; At: total sectional 
area; Ec: concrete elastic stiffness; Es: steel elastic stiffness; Esh: steel plastic 
stiffness; EA/L: axial stiffness of the uncracked tension chord; fct: concrete 
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fu: steel ultimate strength; h: test units height; L0: total length of the RC 
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anchored rebar; lac: length required to develop the steel strain at crack ( εac
); lac,p: length required to develop the plastic portion of the steel strain at 
crack ( εac − εy); lanc: anchorage length; lb: development length required 
to pass from a pre-crack to a post-crack steel stress state; lp: length required 
to develop the total rebar plastic strain ( εult − εy); ls: lap splice length; ly
: development length required to achieve rebar yielding; ly,eqF : distance 
between the yield point and the first point in which εeqF is reached; lult
: development length required to achieve rebar rupture; N : imposed axial 
force; Nc: concrete force; Ncs: force required to attain crack stabilization; 
Nc,max: maximum force carried by the concrete (at srm/2) with reinforce-
ment remaining elastic; Nc,max,p: maximum force carried by the concrete (at 
srm/2) with reinforcement that has yielded; Ns: steel force; Nfc: force required 
to attain first cracking; Nfc,lap: force required to attain first cracking within 
the lap splice region; srm: crack spacing; us: steel displacement; uc: concrete 
displacement; w: crack width; δ: relative steel–concrete slip; �: imposed axial 
displacement; �anc: slip of the anchored rebar at the interface; �comput
: total displacement of the boundary element computed internally (integral 
of εs); �ls: total displacement of a lap splice element; �TC: total displace-
ment of a basic tension chord element; �tot: total imposed displacement to 
the RC wall boundary element; εac: steel strain at crack location; εc: concrete 
strain; εcs: minimum steel strain required to have crack stabilization; εc,srm/2
: concrete strain at midway between two cracks (srm/2); εc,y: steel strain at 
the point corresponding to steel yielding ( εs = εy); εeqF : steel strain at the 
point where steel and concrete stress are equal within the lap splice zone; εp
: steel plastic strain ( εp = εs − εy); εs: steel strain; εsrm/2: steel strain at 
midway between two cracks (srm/2); εy: steel yield strain; εult: ultimate steel 
strain; φl: longitudinal rebar diameter; η: relative error between numerical and 
experimental quantities; η�u: relative error on the ultimate displacement of 
the RC wall boundary element; ηw,out: relative error on the average crack 
width outside the lap spice region; ηw,lap: relative error on the average crack 
width within the lap spice region; ρl: longitudinal reinforcement ratio; ρt: 
transverse reinforcement ratio; σc: concrete stress; σc,max,p: maximum con-
crete stress between cracks (at srm/2) when the steel is in a post-yield state; 
σs: steel stress; σs,B: concrete stress before crack; σs,C: concrete stress after 
crack; τb: bond stress; τb0: elastic bond stress: the reinforcing steel is elastic 
( σs < fy); τb1: plastic bond stress: the reinforcing steel has yielded ( σs > fy
); υnum: generic numerical quantity; υexp: generic experimental quantity.
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