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This paper examines the inaccuracy of the initial strain method 
that is generally adopted in three-dimensional (3-D) finite 
element prestressing analysis and discusses the merits of a newly  
developed method to calculate 3-D prestressing effects. The new 
method considers friction loss of the tendon force as well as pseudo- 
centripetal forces, allowing a wide range of functional forms for 
the prestressed concrete (PC) steel force distribution assumption. 
This study examined the basic concepts for adopting the func-
tional form of the PC steel force distribution at the prestressing 
and seating stages, after which the observed and calculated values 
of pulled-out lengths of PC steel were compared to assure the 
credibility of the assumed functional form of the PC steel force 
distribution. A three-span continuous bridge model was used to 
compare results obtained by the conventional method and the new 
3-D method. The equilibrium of a free body was used also to eval-
uate the accuracy of results by the new method. The importance 
of the new method being able to calculate a pulled-out PC steel 
length considering concrete deformation was stressed because this 
value may be adopted to confirm assumptions of the PC steel force 
distribution.

Keywords: free-body force balance; frictional force; pseudo-centripetal 
force; pulled-out prestressed concrete (PC) steel length.

INTRODUCTION
It might have been accepted in general that the stress 

calculation of structures due to prestressing of prestressed 
concrete (PC) steel with the three-dimensional (3-D) finite 
element method (FEM) has been already established1-3 by 
applying the initial strain method. However, this notion 
comes up as incorrect when closely studying the adaptability 
of the initial strain method to prestressing analysis for arbi-
trary PC steel layouts and 3-D structures. A previous study3 
clearly showed the inaccuracy of results with the initial strain 
method due to the introduction of PC steel rigidity to the 
overall stiffness matrix when it is applied directly without 
any modification, as done in the ABAQUS code. In contrast, 
the DIANA code considers the remedy that the PC steel 
rigidity be nullified when applying the initial strain method 
to calculate the prestressing load effect on concrete, while 
it fails when this remedy is applied to seating loss analysis.

Therefore, this study aimed at obtaining a more compre-
hensive prestressing analysis method for 3-D FEM calcu-
lation without using the initial strain method. The method 
developed is based on the principle that the prestressing load 
on concrete is given by the differential coefficient of the 
assumed PC steel force distribution on the local coordinates 
along the length of PC cable profiles. Then, the prestressing 
load on concrete through any PC cable profiles in the 3-D 
space is considered accurately, no matter the curvature 

intensity and how large the number of PC cables. A computer 
code for general use that adopts the principle with 3-D FEM 
is now under development at the Japan Concrete Institute.

The developed 3-D FEM analysis treats the PC steel stress 
calculation separately from the concrete stress calculation 
and combines them only through the effect of forces acting 
mutually as action and reaction, because this problem is a 
non-conservative system in terms of mechanical energy. In 
other words, given the work of the prestressing jack force, ​​
∫ 
Δ​l​ L​​

​​ ​F​ L​​ ⋅ dl​ + ​∫ 
Δ​l​ R​​

​​ ​F​ R​​ ⋅ dl​​ is not equal to the summation of the 

mechanical energy stored in PC steel ​​A​ s​​ ​∫ 
x
​​ ​(​∫ ​ε​ s​​

​​ ​σ​ s​​ d ​ε​ s​​​)​​ dx​ and 

in concrete ​​∫ 
​V​ c​​

​​ ​(​∫ ​ε​ c​​
​​ ​​σ​ c​​​​ T​ d ​ε​ c​​​)​d ​V​ c​​​​, where FL, FR, ΔlL, ΔlR, As, x, 

σs, and εs stand for jack forces at the left and right sides, 
PC steel elongations at the left and right jack points, the PC 
steel area, the PC steel length, the PC steel stress, and the PC 
steel strain, respectively. In addition, σc, εc, and Vc denote 
the concrete stress tensor, concrete strain tensor, and volu-
metric domain of concrete, respectively. The integral should 
cover the area between jack point and fixed unmovable point 
in a PC steel, which is defined in detail in the section “PC 
steel force expression with polylinear approximation of the 
cable profile.” More correctly, the work generated by the 
jack force exerted on PC steel is not equal to the mechanical 
energy stored in PC steel; it is, however, equal to the summa-
tion of the mechanical energy stored and energy consumed 
by friction between PC steel and concrete, including thermal 
energy. In other words,

	​ ​∫ 
Δ​l​ L​​

​​ ​F​ L​​ ⋅ dl​ + ​∫ 
Δ​l​ R​​

​​ ​F​ R​​ ⋅ dl​ = 

	 ​A​ s​​ ​∫ 
x
​​ ​(​∫ ​ε​ s​​

​​ ​σ​ s​​ d ​ε​ s​​​)​dx​ + ​∫ 
​V​ c​​

​​ ​(​∫ ​ε​ c​​
​​ ​​σ​ c​​​​ T​ d ​ε​ c​​​)​d ​V​ c​​​ + Q​	 (1)

where Q stands for the energy consumed by friction between 
PC steel and concrete, including the thermal energy gener-
ated during prestressing. However, as for the number of 
Q values for prestressing, it is hard to find an appropriate 
friction law: for instance, Coulomb’s law of friction seems 
completely inapplicable to concrete prestressing. There-
fore, this problem was ignored in this study. Instead, it was 
assumed, as in the past, that PC steel stress reduction due to 
friction is linearly dependent on the force working at each 
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point of PC steel. In other words, adoption of the differen-
tial equation ∂T/∂s = –f(s)T is judged to be an appropriate 
expression in light of past experience with prestressing. 
Once this differential equation is adopted, the PC steel stress 
distribution is decided uniquely in any configuration of cable 
profiles, and the prestress loading is given by differentiating 
the PC steel force distribution. These formulations are shown 
in the following sections. The PC steel stress distribution that 
is affected by friction is vital not only during prestressing 
but also at the seating stage. The authors consider that the 
assumed stress distribution of PC steel affected by friction 
may be verifiable through the comparison of the observed 
and the calculated result of the pulled-out lengths of PC 
steels with an assumed PC steel force distribution because 
the theoretical calculation of pulled-out lengths of PC steel 
has been enabled by this study, as described in the next 
section.

In this paper, the proposed theoretical development is 
elaborated first and then the accuracy of the results of the 
developed 3-D FEM calculation is discussed in comparison 
with results of the conventional method assuming the same 
PC steel force distribution. Furthermore, it is shown that the 
adoption of a 3-D strain calculation enabled the derivation of 
the PC steel length that is pulled out from an anchorage plate 
during prestressing, as well as that of the opposite pulled-out 
length that occurs during the seating stage.

RESEARCH SIGNIFICANCE
This study provides an improved fundamental theory of 

PC steel prestressing analysis on a 3-D FEM platform, which 
may replace the initial strain method or initial stress method 
that are currently used. Further, some proofing examples 
are shown. It is explained that the non-conservative char-
acter of mechanical energy due to friction loss leads to an 
appropriate assumed PC steel force distribution function. It 
is stressed that the seating analysis is fully developed, and 
its stress relief calculation agrees well with observed values 
from an existing bridge.

CALCULATION OF PC STEEL FORCES
Derivation of frictional force and pseudo-
centripetal force

As is mentioned in the introduction, adoption of the differ-
ential equation ∂T/∂s = –f(s)T as the governing rule for the 
PC steel force distribution is essential for non-conservative 
systems because the energy consumed by friction is not 
known, and some rules should be assumed for the PC steel 
strain distribution in the first step. Although the differential 
equation form is adopted, the assumption of a formula for the 
strain distribution along the PC steel profile is not necessary; 
it is given as a solution of the assumed differential equation.

In current practice, f(s) = μ∂θ/∂s + λ is adopted and its 
solution, T = T0 ∙ e–μθ–λs is generally adopted. Furthermore, 
the current practice in 3-D FEM is to adopt the initial strain 
method to obtain the prestressing load on concrete using 
the PC steel strain distribution T = T0 ∙ e–μθ–λs, as found in 
ABAQUS or DIANA, similar to the case of thermal load. 
However, it is noted that the initial strain method gives inac-
curate results3 when the relative rigidity of PC steel becomes 

large compared with that of concrete. Therefore, DIANA 
uses the remedy that the PC steel rigidity is null during the 
prestressing stress calculation for concrete. However, those 
main software packages have shown deficiencies when the 
seating stage analysis is compared with actual measurements 
of PC steel strains in an existing six-span highway bridge.4,5

This study proposes a new prestressing analysis method 
as follows. For the PC steel force, a general form for the 
governing differential equation is assumed, such as

	​ ​ ∂ T _ ∂ s ​  =  − f(s ) T​	 (2)

and its solution is given as

	​ T  =  ​T​ 0​​ ⋅ ​e​​ −​∫​ ​ f(s)ds​​​	 (3)

where T and T0 denote the PC steel force at local coordi-
nate location s and the PC steel force at the end where a 
prestressing jack is working. The only limit of the method is 
the integrability of f(s).

Because the PC steel force is a vector, the previous expres-
sion can be written as

	​ T  =  ​T​ 0​​ ⋅ ​e​​ −​∫​ ​ f(s)ds​​ ⋅ n  =  T(θ, s )  ⋅ n​	 (4)

where n is a unit tangential vector that can be defined at 
every point of the PC steel profile.

The form f(s) allows for a wide range of functions because 
the computer code under development can treat the integra-
tion numerically. Force vectors f working on the concrete are 
the variation of the PC steel force and given by the differen-
tial coefficient of the local length coordinate measured from 
an end along a cable profile

	​f  =  ​ 
∂ T​(θ, s)​

 _ ∂ s  ​  =  ​ 
∂ ​(T​(θ, s)​ ⋅ n)​

 ___________ ∂ s  ​  =  ​ 
∂ T​(θ, s)​

 _ ∂ s  ​ ⋅ n + T​(θ, s)​ ⋅ ​ ∂ n _ ∂ s ​  
	 =  S + Z​	 (5)

where

	​ S  =  ​ 
∂ T​(θ, s)​

 _ ∂ s  ​ ⋅ n​	 (6)
and

	​ Z  =  T​(θ, s)​ ⋅ ​ ∂ n _ ∂ s ​​	 (7)

The first term on the right-hand side of Eq. (5) is frictional 
force, and the second term is pseudo-centripetal force. As for 
the unmovable fixing point of a PC steel, PC steel cables are 
tensioned by exerting jacking forces at both ends. During the 
process, the PC steels are pulled out of the anchorage plate at 
the concrete surface at both ends. However, there exists one 
unique point in a PC steel, where slip relative to the concrete 
does not occur and the steel and concrete do not move rela-
tive to each other during the prestressing process. In other 
words, there is a point where relative displacement between 
concrete point and prestressing PC steel material point does 
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not occur throughout the tensioning process. This point is 
called the unmovable fixing point of a PC steel.

PC steel force expression with polylinear 
approximation of the cable profile

For numerical treatment, a curved PC steel in 3-D space 
is approximated by multiple straight lines and modeled as 
series of line groups composed of m line segments, as shown 
in Fig. 1, the size of which depends on the required accuracy 
of its solution. The length of m line segments is generally not 
equally divided, and it is necessary to divide it depending 
on the PC steel curvature radius. In a domain where the 
curvature radius is small, it is necessary to increase the 
number of divisions and use short line segments. Note that 
both ends of each line segment need not be on the surface of 
solid elements of concrete. Let coordinate s along the line 
segment be taken from the left end of a PC steel and let θk 
be the sum of the angles formed by line segments k+1 from 
the left end, where angles are measured clockwise. Then, the 
unmovable fixing point s0 satisfies the following equation by 
its definition

	​ ​T​ L0​​ ⋅ exp​{− f​(​θ​ k​​ , ​s​ 0​​)​}​  =  ​T​ R0​​ ⋅ exp​{− f​(​θ​ m−k​​ ,​(​s​ max​​ − ​s​ 0​​)​)​}​​		
		  (8)

So far, the written the PC steel force has been written as 
T = T0 ∙ f(θk, s) with an initial assumption of the frictional 
characteristics. Applying the bisection method to Eq. (8) 
and performing iterative calculations obtains the unmovable 
fixing point s0 numerically. The tension force T(θk, s) gener-
ated in the PC steel can now be expressed by the following 
equations by using the unmovable fixing point as the domain 
boundary

​T​(​θ​ k​​ , s)​  =  ​{​ 
​T​ L0​​ ⋅ exp​{− f​(​θ​ k​​ , s)​}​

​ 
s  ≤  ​s​ 0​​

​   ​T​ R0​​ ⋅ exp​{− f​(​θ​ m−k​​ ,​(​s​ max​​ − s)​)​}​​  s  >  ​s​ 0​​
​​​	 (9)

where smax is the total line group length or the total length of 
the single PC steel of concern.

It is clear that either the left or right end of the PC steel 
will be the unmovable fixing point if the PC steel is pulled 
from one side alone. The friction forces {S} along the PC 
steel configuration direction, Eq. (6), can be rewritten with 
polylinear approximation as

	​ ​{S}​  =  ​ 
∂ T​(​θ​ k​​ , s)​

 _ ∂ s  ​​{​n​ k​​}​​	 (10)

where {nk} denotes the unit vector for the direction of line 
segment k.

When an angle change occurs between line segment k and 
line segment k+1, as shown in Fig. 1, pseudo-centripetal 
force {Z} is generated at the point where these line segments 
are connected. From Eq. (7), {Z} is written as

	​ ​{Z}​  =  T​(​θ​ k​​ , s)​​{​n​ k​​}​ − T​(​θ​ k+1​​ , s)​​{​n​ k+1​​}​​	 (11)

Conversion of PC steel forces into equivalent 
nodal force of concrete

Based on Eq. (9), equivalent nodal forces are derived for 
the FEM calculation from the frictional force of PC steels 
and from pseudo-centripetal forces due to the angle change 
of line segments. Reaction forces {R} exerted on concrete 
elements at the left and the right PC steel ends by the tension 
forces are opposite-sign forces of the tension forces TL0 
and TR0 at the ends, and its nodal forces can be obtained by 
applying the virtual work principle. The increment of equiv-
alent nodal force {Q} can be finally given as

	​ ​{Q}​  =  ​[N]​​ T​​[​{R}​ + ​{Z}​]​ + ​∫ 
s
​​ ​[N]​​ T​ ​ 

∂ T​(​θ​ k​​ , s)​
 _ ∂ s  ​​{​n​ k​​}​ds​​	 (12)

where [N] is the shape function of a solid element of concrete.
Although Eq. (12) includes a path integral with respect to 

s, it should be noted that, in the segment where the unmov-
able fixing point exists, the path integral must be divided 
into cases with the fixing point as the boundary. The path 
integral in Eq. (12) can be easily calculated by a previously 
reported numerical integration method.6

Calculation of pulled-out PC steel length from 
anchor plate considering concrete deformation

Seating analysis of PC steels is a problem to obtain the 
stress distribution under the condition of given pulled-out 
lengths of PC steels with a negative sign. ABAQUS does not 
have answers for the problem, while DIANA recommends 
in its manual to only assume a kind of mirror inversion of 
the PC steel force relief at certain lengths from the anchor 
plates but provides no assurance that the given condition 
of the pulled-out length of PC steels is accurately satisfied. 
The difference between the DIANA solution compare to the 
measured values will be shown in later in this section.

To begin the formulation, first treat the pulled-out length 
calculation at prestressing. Lengths of PC steel pulled out 
from anchor plates at the left and the right ends are expressed 
by the following equations, where the lengths at the left and 
the right ends are denoted as ΔℓL and ΔℓR, respectively

Fig. 1—Curved PC steel cable approximated by multiple 
straight lines.
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	 ΔλL = ΔℓL,cab – ΔℓL,con, ΔℓR = ΔℓR,cab – ΔℓR,con	 (13)

in which subscripts cab and con denote components of the 
pulled-out length attributed to the PC steel extension and 
concrete deformation, respectively. The left and the right 
pulled-out PC steel length components attributed to PC steel 
can be expressed by the following equations, respectively, 
by the path integral of the strain generated in the PC steel 
along the PC steel length starting from the unmovable fixing 
point to the left end or to the right end

	​ Δ ​ℓ​ L,cab​​  =  ​∫ 
0
​ ​s​ 0​​​ ​ 
T​(​θ​ k​​ , s)​

 _ EA  ​ ds​​, ​Δ ​ℓ​ R,cab​​  =  ​∫ ​s​ 0​​
​ ​s​ max​​​ ​ 

T​(​θ​ k​​ , s)​
 _ EA  ​ ds​​	 (14)

where EA is the axial stiffness of PC steel.
In addition, the left and right pulled-out PC steel length 

components due to concrete contraction are expressed by 
Eq. (15a) and (15b), respectively, by the path integral of 
concrete strain components along the PC steel from the 
unmovable fixing point to the left or right end.

	​ Δ ​ℓ​ L,con​​  =  ​∫ 
0
​ ​s​ 0​​​ ​ε​ c​​ ds​​, ​Δ ​ℓ​ R,con​​  =  ​∫ ​s​ 0​​

​ ​s​ max​​​ ​ε​ c​​ ds​​	 (15)

where εc is the normal strain component of concrete in the 
direction along the PC steel and is expressed by Eq. (16) 
using concrete strain tensor εij and the component ni of the 
unit vector {nk}, which is the PC steel profile directional 
normal to a PC steel point.

	 εχ = εijnjni	 (16)

The path integral in Eq. (14) can also be performed by a 
previously reported method.6

The formulation at the seating stage is next. The previous 
derivation is used in both the prestressing stage and seating 
stage. However, the unknown parameters are different at the 
seating stage. At the prestressing stage, the unknown param-
eters are the pulled-out lengths, ΔlR and ΔlL, while they are 
TR0 and TL0 at the seating stage, or the prestressing forces at 
both ends. For the seating problem, it is obvious that iteration 
is necessary when a calculated pulled-out length is different 
from a given length, in such a way that the strain relief 
assumption must be modified according to the differences 
of the calculated pulled-out and given lengths. The proposed 
method performs the iteration until the limiting convergence 
is attained. It is stressed that it is important to recognize at 
least three factors in the seating stage—namely, the PC steel 
force distribution affected by different friction intensities, 
movement of the fixing point from the prestressing stage at 
which the PC steel forces from both sides become balanced, 
and concrete contraction. Each of these will be discussed 
rather briefly in the following. They are treated in more 
detail elsewhere.7

PC steel force distribution affected by different 
friction intensity at seating stage

The basic assumption of the PC steel force distribution is 
that the governing differential equation of the PC steel force 
expressed as Eq. (2) does not change even at the seating stage.

In other words, superposition of the solution exists even at the 
seating stage. However, the concrete form of f(s) is still under 
examination, as mentioned before, and this study adopted the 
one that gives the least square error because the authors have 
tools to calculate the pulled-out lengths of PC steels once the 
PC steel force distribution assumption is adopted.

So far, the least square of error dispersion looks reason-
ably small in the assumed PC steel stress distribution as

	​ f(s )   =  ​f​​ *​​(s / ​s​ 0​ *​)​  =  μ​(​
1
 ⧸​s​ 0​ *​

​)​ ​ ∂ θ _ ∂ s ​ + λ​(​
1
 ⧸​s​ 0​ *​

​)​​	 (17)

Then, T(s) is expressed as

	​ T(s )   =  ​T​ 0​​ ⋅ ​e​​ −μθ​(​
s
 ⧸​s​ 0​ *​

​)​−λ​(​
s
 ⧸​s​ 0​ *​

​)​​​	 (18)

This is the normalized form of the formula currently 
adopted at the prestressing stage, and if one takes s0

* = 1 m, 
it reduces to

	​ f(s )   =  ​f​​ *​ (s / 1 m )   =  μ ​ ∂ θ _ ∂ s ​ + λ​	 (19)

The normalization by s0
* of the original length s for the PC 

steels is understood to express the contact point density. This 
study used the value s0

* = 1 m at the prestressing stage and 
s0

* = 3.3 cm at the seating stage, according to the increase 
of contact density. Again, the reliability of the assumed PC 
steel force distribution will be confirmed by comparing the 
specified and calculated pulled-out lengths of PC steels.

Movement of fixing point from prestressing stage
At the seating stage, in Eq. (9), TL0 and TR0 will take 

different values from those of the prestressing stage. There-
fore, the fixing point location s0 changes.

Concrete contraction
Concrete contraction or stress relief at the seating stage 

εc = εijnjni is recalculated, and Eq. (15) is applied with a 
renewed integration domain because the fixing point has 
changed. It should be noted herein that if a PC steel is in 
the air, integration of Eq. (15) may be replaced with the 
displacement between the points where a PC steel leaves the 
concrete and enters air at a point A, where s = sR,inair, and 
reaches the other side of concrete at a point B, where s = 
sL,inair in such a way that

	​ ​∫ 
​s​ L​​,in​ air

​ ​s​ 0​​  ​ ​ε​ c​​ ds + ​∫ ​s​ 0​​
​ ​s​ R​​,in air​ ​ε​ c​​ ds =​ ​∫ 

​s​ L​​,in​ air
​ ​s​ R​​,in air​ ​ε​ c​​ ds  =  Δ ​air​​ ​​​​​​​	 (20)

	 Δαιρ = (l – l0)	 (21)

where

	​ l  =  ​√ 

__________________

  ​
​( ​x​ B​​ + ​u​ B​​ − ​x​ A​​ − ​u​ A​​ )​​ 2​+

​  ​(y ​B​​ +​​​ ​v​ B​​ − y ​A​​ −​​​ ​v​ A​​ )​​ 2​+​  
​( ​z​ B​​ + ​w​ B​​ − ​z​ B​​ − ​w​ A​​ )​​ 2​

  ​ ​​	 (22)

and

	​ ​l​ 0​​  =  ​√ 
_____________________________

   ​( ​x​ B​​ − ​x​ A​​ )​​ 2​ + (y ​B​​ −​​​ y ​​A​​ )​​​​​ 2​ + ​( ​z​ B​​ − ​z​ B​​ )​​ 2​ ​​	 (23)
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Herein, (xA, yA, zA) are coordinates for A; (xB, yB, zB) are 
for B; and uA = (uA, vA, wA) and uB = (uB, vB, wB) are the 
displacements of points A and B, respectively. Alternatively, 
air elements may be used to calculate the integration.

COMPARISON OF 2-D FRAME ANALYSIS AND 3-D 
FEM MODELING OF PRESTRESSING EFFECTS 

FOR THREE-SPAN CONTINUOUS BRIDGE
The purpose of this comparison is to show agreement 

of the calculation results of the two-dimensional (2-D) 
frame analysis currently used worldwide with those of the 
proposed 3-D FEM analysis, when both analyses use the 
same PC steel force distribution assumption. It should be 
noted that 2-D frame analysis generally assumes the PC steel 
stress distribution as8

	​ T  =  ​T​ 0​​ ⋅ ​e​​ −(μθ+λs)​​	 (24)

Therefore, the proposed method also assumed the same 
PC steel force distribution, although this method and its 
computer code can treat any kind of PC steel force distribu-
tion, as mentioned in the previous section. Depending on the 
purpose of the analysis, various tension formulas, including 
those given in the literature,9 can be adapted.

The subsequent calculations were carried out with the 3-D 
FEM code LECOM to implement the proposed analytical 
method. LECOM was developed by the LECOM Research 
Association10 in Japan and knowhow obtained with LECOM 
has been under continuous implementation for the JCMAC3 
software of the Japan Concrete Institute.

Three-span continuous bridge model
The adopted bridge configuration is shown in Fig. 2, 

where the sectional dimensions of box girders as well as the 
solid sections of piers are shown, and six prestressing PC 
steels are deployed with 2900 kN of prestressing force per 
PC steel cable, and all PC steels are arranged through the 
bridge length from the one end to the other. Mesh discreti-
zation for the 3-D FEM analysis was performed with almost 
cubic solid elements measuring 40 cm throughout the whole 
structure, and the number of degrees of freedom amounted 
to approximately 165,000.

Calculation of deformation and sectional forces
Applied forces are the dead load and the prestressing 

force, and these are applied separately. Sectional forces 
and moments are shown in Fig. 3, where the red curves are 
the prestressing force, the blue curves are the dead load of 
the bridge’s own weight, and each numeric number with U 
and N denotes the results by the 2-D frame analysis and the 
proposed 3-D FEM, respectively. Figure 4 shows the calcu-
lation results of deflection, where the upper figure is the 
deflection by the dead load and the lower figure shows deflec-
tion by the prestressing force. It is important to note that the 
response of the bridge to the dead load is nothing less than 
the comparison of the general 2-D frame analysis and 3-D 
FEM analysis; while for the response to prestressing force, 
the treatment of the frictional effect is different between the 
two, the comparison has its own meaning, and they produce 

almost the same results except for the deflection that gives 
a 13 to 38% increase for the 3-D FEM with respect to the 
results of the 2-D frame analysis, as shown in Table 1. This 
difference is caused by shear deflection, which is neglected 
in the 2-D frame analysis but not the 3-D FEM calculation. 
This is shown by calculating the shear deformation by simply 
applying the Timoshenko beam theory. In other words, the 
shear strain of the section is adopted as

	​ γ  =  ​ κS _ GA ​​	 (25)

where κ is a factor that depends on the box configuration; S  
and A are the shear forces acting on a section and sectional 
area, respectively; and G is the shear rigidity. The differences 
of the results of the two calculation methods almost agree with 
the calculated shear deformation in every case when κ = 4 is 
assumed,11 as shown in Table 1. For the different values of 
κ, agreement may become less than that in Table 1, but the κ 
value is limited to roughly 2 to 5, and it may be obvious that 
shear deformation is the predominant factor of the deforma-
tion difference between the two calculation methods.

Another examination to assure reliability of the proposed 
method of calculation is found in the value of the prestressing 
force of the PC steel at the central span center, which must 
agree with the value of the given jack prestressing force 
minus frictional forces along the PC steel length from one 
end to the center point of the bridge—that is, 14,968 kN, 
which is the value calculated by T = T0exp(–μθ – λs) with 
a small amount of error due to the approximated segment 
assembly of the curved PC steel profile. The corresponding 
value by the 2-D frame analysis is 14,716 kN and the differ-
ence from the 3-D FEM is 252 kN, which is reasonably 
small, though it may be safely said that the difference is 
mostly attributable to the error of the 2-D frame analysis.

EXAMINATION USING EXISTING SIX-SPAN 
BRIDGE DATA

The data used was obtained during construction of a 
462 m long six-span viaduct to evaluate the reliability of the 

Fig. 2—Configuration of three-span continuous bridge.
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proposed method. Note that a study of the existing bridge 
was already reported in detail in Nishio et al.12 and only the 
portions related to force balance, strain measurements, and 
pulled-out lengths are discussed in this paper.

Figure 5 shows shape of the existing bridge, namely the 
longitudinal and plan views. With a total length of 462 m, 
the curved line is approximately 12 m away from the straight 
line connecting A1 and A2 at the point of greatest curvature. 
There exists an elevation difference of approximately 5 m 
between points A1 and A2 due to a longitudinal gradient. 
Table 2 shows the dimensions of the bridge.

Prestressing PC steel with built-in optical fibers in the 
external cables4,5 was specially arranged between piers P2 
and P4 and between piers P1 and P2, and the tension force 
in the PC steel at prestressing was measured. Figure 6 shows 
the model diagram of the bridge and a part of the discreti-
zation. Table 3 shows the parameters used for the analysis. 
Because the bridge draws a gentle s-curve on the plane 
and has a gentle upward slope from points A1 to A2, the 
arrangement of the prestressing PC steel is not symmetric. 

The entire 462 m long six-span bridge was faithfully discret-
ized, as shown in Fig. 6. Therefore, the model provided a 
large degree-of-freedom analysis, with 257,566 elements, 
367,271 nodes, and 1,101,813 degrees of freedom.

Fig. 3—Comparison of obtained bending moments from conventional analysis and from proposed 3-D FEM.

Fig. 4—Comparison of vertical deflections calculated by conventional analysis and by proposed 3-D FEM.

Table 1—Comparison of vertical deflections by 
proposed 3-D FEM, conventional analysis, and 
Timoshenko shear deflection, mm

Load Position
Proposed 
method

Conven-
tional 

method Difference

Calculated 
shear 

deflection

Dead load

Center 
span 16.1 12.5 3.6 3.7

Side 
span 16.3 13.4 2.9 2.8

Prestressing 
force by 
external 
cables

Center 
span –3.7 –2.3 –1.4 –1.2

Side 
span –8.9 –7.7 –1.2 –1.1
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Sectional forces calculated using free-body force 
balance

In 3-D FEM analysis, stress is calculated based 
on strain, which comes from displacement, and the cross-sec-
tional force is obtained by integrating this stress. In other 
words, there are two steps in the middle of the procedure. 
In contrast, a method of calculating cross-sectional forces 
using free-body equilibrium gives cross-sectional forces and 
moments from the balance of the three axial forces and the 
three moments around three axes due to existing external 
and reaction forces only at the pier bases. Then, the middle 
of the procedure has only one step, which is expected to 
increase the accuracy of the obtained values. Therefore, 
the sectional forces and moments derived from stress inte-
gration of a section of the 3-D FEM model were compared 
with the ones derived from the free-body equilibrium calcu-
lation of the 3-D FEM. Two prestressing cases were used 
in the aforementioned bridge construction, where the PC 

steel strains were actually measured. One is the PC steel 
prestressing between piers P2 and P4 in Fig. 5. The other is 
the PC steel prestressing between piers P1 and P2 in Fig. 5. 
In the former case, a free body was composed to cut through 
the center cross section between P2 and P3. This cross 
section was used as the examination cross section, which 
is near cross section 66 in Fig. 7. When the portion of the 
bridge from A1 to the cross section, which includes A1, P1, 
and P2, was considered as a free body, the cross-sectional 
force at that section was calculated from the balance of the 
six components of the forces and moments acting on this 
free body; in other words, the sum of three orthogonal axial 
force components and three orthogonal moments around 
any point in 3-D space must be zero in total. Table 4 shows 
a comparison between this derived cross-sectional force 
and the cross-sectional force obtained by the integration of 
stresses obtained by the proposed method. The two are in 

Fig. 5—General view of existing continuous viaduct.9,10

Table 2—Overview of existing continuous viaduct

Bridge type Prestressed concrete box girder bridge

Structural form Six-span continuous rigid-frame viaduct

Bridge length 462.000 m (road center)

Span length 44.500 + 4 × 91.000 + 51.500 m
(structural center)

Width 12.800 to 15.300 m

Effective width 5.565 + 5.565 to 6.815 + 6.815 m

Alignment of 
bridge

Longitudinal gradient: +3.007% (L = 470.000 m)

Cross slope: 1.886% – 6.000%

Plane figure: A = 400 to 450 m (clothoid),
R = 900 m (arc)

Fig. 6—3-D discretization model for proposed method.

Table 3—Parameters used for analysis

Young’s
modulus

Concrete (superstructure) 31,000 N/mm2

Concrete (substructure) 28,000 N/mm2

Prestressing steel (from mill sheet) 194,150 N/mm2

Coefficient of 
friction

Per length 0.0/m

Per angle 0.3/rad

Analysis model
Number of nodes 367,271

Number of elements 257,566
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good agreement, confirming the reliability of the proposed 
method. In the latter case, a free body was formed to cut 
through the cross section between sections 32 and 33 in 
Fig. 7. The free body was the portion of the bridge from A1 
to the cross section, with includes A1 and P1. Similar to the 
six components of sectional forces due to the external cables 
shown in Fig. 7, the three-directional axial forces and the 
moments around the three-directional axes were calculated 
and shown in Table 5. They are all in good agreement. This 
indicates that the proposed method accurately calculates the 
sectional forces acting on the curved bridge. This should be 
true no matter what PC steel force distribution assumption 
is adopted.

Comparison of strain distribution of PC steel 
during tensioning between observation and 
calculation results

Figure 8 shows the arrangement of the PC steel at the 
pier P1 head, where the first block is cantilevered. PC steels 
U100-1L and U100-1R are located in the left and the right 
webs, and PC steels U100-2L and U100-2R are located in 
the upper slab. Figure 8 also shows the arrangement of PC 
steels cantilevering the fourth block from the pier P1 head, 
and those PC steels, U104-L and U104-R, are located in 
the left and right webs. The PC steel layout in the bridge 
is shown in Fig. 8 with red lines. Mesh models are shown 
in Fig. 9 with the final tension forces measured during the 
actual construction, which were used in the analysis.

Strain measurement results with their distribution in the 
PC steel, as well as the pulled-out PC steel length at the jack 
position, are compared with the calculated results adopting 
the PC steel force variation of T = T0 ∙​​e​​ −μ​(1/​s​ 0​ *​)​θ−λ​(1/​s​ 0​ *​)​s​​ with 
s0

* = 1 m.
Figure 10 shows the comparison of the measured and 

calculated tension forces at the pier P1 cap as an example. 
The measured strain is in the web PC steel U100-1L. 
Although fluctuation exists in the measured values, the strain 

distribution decreases slightly toward the center of the PC 
steel due to friction loss, which looks surprisingly small. The 
analysis results also show the effect of friction loss. Design 
values for friction by the Japan Road Association8 are 0.3 for 
μ and 0.004 for λ, values that we concluded were too large 
for this case. In the calculation, μ values were varied from 
0.01 to 0.3 while keeping λ/μ = 0.0133. Comparison of the 
measured and analytical values indicates that the actual fric-
tion coefficient is small and on the order of 10–2.

Tables 6 and 7 show measured values of the pulled-out PC 
steel length at jack positions of the PC steels and analytical 
values by the proposed method. The measured values and 
the analytical values of the PC steels of the web and the slab 
at the pier P1 head, as well as at the stage of the overhanging 
fourth block, become closer in agreement when the friction 
coefficient μ = 0.01 or less is assumed for all the PC steels 
discussed herein.

Seating analysis of PC steels
The pulled-out lengths during prestressing and seating 

were measured for the external cable between spans P2 and 

Fig. 7—Locations and identification numbers of cross 
sections, piers, and abutments and cross section focused on 
in this study.

Table 4—Cross-sectional forces obtained from free-body force balance and from proposed method

Force Nx, kN Ny, kN Nz, kN Mx, kN·m My, kN·m Mz, kN·m

Cross-sectional force obtained from balance 
of forces and moments that act on free body –27,904 –406 –545 –212 10,773 –1617

Cross-sectional force obtained from 
proposed method –28,259 –399 –559 –222 10,912 –1625

Table 5—Cross-sectional forces obtained from free-body force and moment balance and from proposed 
method

Force Nx, kN Ny, kN Nz, kN Mx, kN·m My, kN·m Mz, kN·m

Cross-sectional force obtained from balance 
of forces and moments acting on free body –7375 577 –26 261 3501 809

Sectional force obtained from proposed 
method –7379 577 –29 260 3474 808
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P4 and for internal cables between spans P1 and P2. PC 
steel was pulled out from anchor plate during prestressing, 
and its observed pulled-out length was compared with the 
calculated lengths. To calculate the pulled-out length of 
steel, concrete contraction must be calculated, which is not 
accurately evaluated in current practice. This study showed 

how to calculate it accurately for both cases where PC steels 
are embedded in concrete, the so-called internal cables, and 
for PC steel suspended in the air, the external cable in the 
previous section. It is also emphasized that the pulled-out 
length calculation of PC steel in the air is generally also 
applicable to cable-stayed bridge or extradosed cable bridge 
calculations. Figure 11 shows the PC steel profiles between 
spans P2 and P4 and for the internal cables of span P1-P2. 
Table 8 shows the analytical conditions. The measured 
pulled-out lengths before seating are compared with calcu-
lated results for the external cable prestressing between span 
P2-P4 as an example.

Figure 12 shows the comparison between the measured 
tension force in the prestressing PC steel and the analytical 
pulled-out length for various friction coefficients. It shows 
perfect agreement of both values when we adopt μ = 0.3, 
λ = 0.003, and s0

* = 1 m, producing a steel force variation of

	​ T  =  ​T​ 0​​ ⋅ ​e​​ −μ​(​
1
 ⧸​s​ 0​ *​

​)​θ−λ​(​
1
 ⧸​s​ 0​ *​

​)​s​​	 (26)

In Fig. 13(a), the measured tension force distribution after 
seating is shown, which indicates that the strain relief zone 

Fig. 8—Locations of PC steel cables.

Fig. 9—Mesh discretization and locations of PC steel cables.

Fig. 10—Frictional coefficient and tension force distribution 
of PC steel in web at pier P1 head.
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extended over the whole span with a length of over 90 m, 
and this observation is quite contrary to the basic assump-
tions of the Japan Road Association8 or the DIANA manual, 
which assume a mirror inversion relief line of prestressing 
in the limited length of a span that is determined so that the 
integrated stress value becomes a stipulated seating value. In 
contrast to the assumption in DIANA, we assumed the steel 
force distribution as

	​ f(s )   =  ​f​​ *​​(s / ​s​ 0​ *​)​  =  μ​(​
1
 ⧸​s​ 0​ *​

​)​ ​ ∂ θ _ ∂ s ​ + λ​(​
1
 ⧸​s​ 0​ *​

​)​​	 (27)

and T(s) = T0 ∙ ​​e​​ −μθ​(s/​s​ 0​ *​)​+λ​(s/​s​ 0​ *​)​​​ with s0
* = 3.3 cm.

The results are shown in Fig. 13(b) and (c). Note that 
the tension force data represent the relieved portion of the 
total tension force surprisingly well, because it was consid-
ered that the observed total tension force in span P2-P4 has 
some irregularity. The results show good agreement with the 
observed tension force data, which suggests that stress relief 
for prestressing PC steels after seating may be possible with 
this steel stress distribution assumption.

As for the observation of the strain distribution in PC 
steels between P1 and P2, Fig. 14 shows a comparison of 
the PC steel force at prestressing and after seating between 
the observed and calculated values assuming friction coef-
ficients of μ = 0.055 and λ = 0.0005 and the same contact 

Table 6—Measured values of pulled-out steel length and analytical values by proposed method in web and 
slab at pier P1 head, mm

Cable location

Measured value

Analytical value
μ = 0.01

λ = 0.000133

Analytical value
μ = 0.1

λ = 0.00133

Analytical value
μ = 0.2

λ = 0.00266

Analytical value
μ = 0.3

λ = 0.004

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Left side web
(U100-1L) 46.5 77.5 94.0 42.9 48.4 91.3 41.8 47.2 89.0 40.7 45.9 86.6 39.5 44.6 84.1

Right side web
(U100-1R) 46.6 41.6 88.2 47.6 40.6 88.2 46.4 39.7 86.1 45.1 38.7 83.8 43.9 37.7 81.6

Left side slab
(U100-2L) 41.6 44.6 86.2 34.6 50.0 84.6 34.3 49.5 83.8 33.9 49.0 82.9 33.5 48.5 82.0

Right side slab
(U100-2R) 40.6 44.6 85.2 34.2 50.4 84.6 33.9 49.9 83.8 33.5 49.4 82.9 33.2 48.9 82.1

Table 7—Measured values of pulled-out steel length and analytical values by proposed method at fourth 
cantilevered block at pier P1 head

Cable location

Measured value

Analytical value
μ = 0.01

λ = 0.000133

Analytical value
μ = 0.1

λ = 0.00133

Analytical value
μ = 0.2

λ = 0.00266

Analytical value
μ = 0.3

λ = 0.004

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Side 
A1

Side 
A2 Total

Left side
(U104-L) 124 122 245 132 129 261 127 124 251 122 119 241 117 115 232

Right side
(U104-R) 137 107 243 133 132 265 129 127 256 124 122 246 119 118 237

Fig. 11—PC steel profiles between span P2-P4 and span P1-P2 for internal cables.
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length index s0
* of 3.3 cm. These results show almost perfect 

agreement between the observed and the calculated tension 
force values.

CONCLUSIONS
The reliability of the proposed three-dimensional (3-D) 

finite element method (FEM) analysis for prestressing was 
evaluated. One of the key issues to assure reliability is how 
to convert the prestressing force of PC steels with arbitrary 
configurations to frictional force and pseudo-centripetal 
force, and this was successfully achieved by polylinear 
approximation of the cable profile in 3-D space. The other 
issue is the assumption of the steel force distribution that 
considers friction and pseudo-centripetal force. It is very 
evident that smaller straight-line lengths in the polylineariza-
tion of the PC steel profile produce more accurate solutions. 
The accuracy of the results of the proposed method was also 
compared with the results of the two-dimensional (2-D) 
conventional method for a typical three-span continuous PC 
rigid-frame box-girder bridge. Further, the pulled-out length 
of PC steels and the PC steel strain that were observed in 
an existing six-span curved elevated bridge were compared 
with the calculated values, and the reliability of the method 
was confirmed. The present results are intended to improve 
the current analytical practice by using the 3-D FEM  
developed herein.
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