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Abstract 

In the calculation of reinforced concrete (RC) flat slabs with transverse reinforcement, punching shear resist‑
ance is one of the most critical factors. It is true that design provisions may be implemented, but they often result 
in significant biases and deviations from expectations. This study aims to present an optimized machine learning 
(ML) algorithm for estimating the punching shear resistance. Four machine learning (ML) algorithms (SVR, DT, RF, 
and XGBoost) with Bayesian optimization (BO) are presented in this paper to provide accurate predictions for flat 
slabs. The adoptability and optimization of the models are achieved through the analysis of a database of 337 test 
specimens with nine design parameters. Machine learning (ML) techniques are used to estimate punching shear 
resistance, which is compared with design provisions and equations relating to critical shear crack theory (CSCT). 
According to this study, Bayesian optimization is still capable of improving the performance of conventional machine 
learning algorithms, while the XGBoost‑based model offers advanced capabilities. Predictions based on BO‑XGBoost 
are in good agreement with actual values (MAE, RMSE, and R2 are 0.09 MN, 0.14 MN, and 0.92, respectively) in test set. 
Following a detailed explanation using Shapley additive explanation (SHAP), a high‑performance ML approach is used 
to investigate the predictive results. With the proposed optimized algorithms, it is possible to determine the punching 
shear resistance of flat slabs with transverse reinforcement during the preliminary stages of the construction.

Keywords Machine learning, Bayesian optimization, Punching shear resistance, RC flat slabs, Transverse 
reinforcement

1 Introduction
The versatility of flat slabs and the reduced formwork 
requirements make them a popular option for reinforced 
concrete (RC) construction (Kang et  al., 2021). When 
punching shear forces are applied to slab-column con-
nections, shear and bending stresses may occur which 
may result in progressive collapse (refer to Fig.  1). By 
incorporating transverse reinforcements, it is possible 

to increase the punching shear resistance. Therefore, 
its use is encouraged in design codes, including Model 
Code 2010 (fib MC, 2012). In spite of the widespread 
use of transverse reinforcement, there is no generally 
accepted design model that combines accuracy with sim-
plicity. The design codes differ significantly regarding 
punching resistance, including ACI 318 (ACI Commit-
tee, 2019) and Eurocode 2 (EN, 1992-1-1, 2004), or the 
design parameters have changed over time (i.e., the posi-
tion of the critical perimeter). It is imperative to realize 
that many punching strength code provisions are based 
on empirical models, adjusted to accommodate test 
results, but without any coherent theory behind them. 
To extend the validity of the empirical formulae, a grow-
ing number of correction factors have been incorporated. 
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The addition of correction factors does not guarantee 
safe application when a formula is outside its calibration 
range (Rankin & Long, 2019), nor does it enable engi-
neers to gain a comprehensive understanding of mechan-
ical behavior.

Thus, researchers have abandoned traditional 
approaches to correcting empirical formulas in favor of 
proposing mechanical models applicable to actual con-
ditions. Several studies According to some research-
ers, concrete slab punching failure is caused by inclined 
tensile cracks and compressive crushing (Hegger et  al., 
2009). Choi et al. (2014) presented a method for calculat-
ing punching shear strength by assuming that compres-
sion is the primary resistance to punching shear at the 
critical section of the slab. A modification of this model 
enables it to be applied to both slender and squat con-
crete footings (Truong & Choi, 2018). However, recent 
studies have shown that tension resistance must be 
viewed in conjunction with the interdependent mecha-
nisms of compression and tension shear transfer, which 
also indicates that tension resistance at critical sections 
should not be neglected (Ju et  al., 2021a, 2021b). Ruiz 
and Muttoni (2009) proposed the Critical Shear Crack 
Theory (CSCT), which takes into account all potential 
shear carrying mechanisms of shear-reinforced slabs. It 
is assumed that shear-transfer actions are dependent on 
mechanical parameters such as concrete compressive 

strength, aggregate size, and crack width. To calculate the 
failure criteria of the CSCT for slender members, a sim-
plified failure surface and kinematics have been proposed 
(Muttoni et  al., 2017). A limitation, however, is that it 
results in a discontinuous displacement field along the 
failure surface (Ruiz et al., 2015; Simoes et al., 2018). The 
punching resistance of squat slabs and footings is calcu-
lated using an effective concrete compressive strength 
that accounts for crack openings (Cavagnis et  al., 2017; 
Muttoni & Ruiz, 2019). In spite of the fact that all of these 
researches follow the principles of the CSCT, they have 
been tailored to address specific problems. Research is 
being carried out to determine the most effective way to 
predict punching shear resistance, however, no consen-
sus has yet been reached (Wu et al., 2022).

A number of limitations exist in the models mentioned 
above, including inadequate consideration of key factors 
and simplified formulation derivations. Machine learn-
ing (ML) has rapidly developed in recent years, provid-
ing us with new means of solving complex problems. This 
method has been applied to civil engineering applications 
with satisfactory results (Koo et al., 2020; Ngo et al., 2023; 
Ma et al., 2023) especially when complex boundary con-
ditions are involved. To predict the punching shear resist-
ance of RC flat slabs without transverse reinforcement, 
multiple ML approaches were applied. Jeong et al. (2021) 
established prediction models by the K-nearest neigh-
bor (KNN) algorithm, and a database of 104 specimens 
was compiled by Truong   et  al. (2022a) to calculate the 
ultimate strength of slabs, which demonstrated that ML-
based models were reliable and accurate for slab evalua-
tion. Further analysis of the punching shear strength was 
conducted using generative adversarial network (GAN), 
decision tree, gradient boosting, artificial neural net-
work, deep learning, and random forest (Kim et al., 2022; 
Shen et  al., 2022a, 2022b, 2022c; Truong et  al., 2022a, 
2022b; Badra et al., 2022; Derogar et al., 2022; Silva et al., 
2023). A comparison of these researches with the exist-
ing design codes showed that the ML models performed 
much better than existing methods. However, an accu-
rate model relies on a large dataset (Jumaa & Yousif, 
2018). Due to the lack of optimization of parameters, the 
above methods may have produced overfitted or inaccu-
rate results (Alam et  al., 2021). Performance of analysis 
can be improved through the use of a variety of hyperpa-
rameter tuning methods, including grid search (Todorov 
& Billah, 2022), random search (Liu et  al., 2022), and 
Bayesian optimization (Pan et  al., 2022). In contrast to 
other techniques, Bayesian optimization algorithm select 
the most appropriate parameter set by optimizing rather 
than picking one at random (Zhang et al., 2021; Li et al., 
2023). In this respect, it may be useful for the analysis of 
large amounts of complex data. The ML-based models 

Fig. 1 Flat slabs with transverse reinforcement. a Punching failure. b 
A‑A
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have proved to be one of the most effective methods 
for strength predictions, they are still a black box that 
requires manual input (Shen et al., 2022a, 2022b, 2022c). 
Several studies have attempted to overcome the difficulty 
of interpreting ML algorithms by incorporating Shapley 
additive explanation (SHAP) (Almustafa & Nehdi, 2022; 
Tran et  al., 2022; Feng et  al., 2023), Partial dependence 
plot (Liang et  al., 2022), and Eureqa (Faridmehr et  al., 
2022). Despite the extensive studies of interpretable 
methods based on the theories above (Ribeiro et al., 2016; 
Shrikumar et al., 2016), no study has explored the punch-
ing shear resistance of RC flat slabs with transverse rein-
forcement. The behavior of RC flat slab connections may 
be better understood by an ML-based model with inter-
pretable results.

Up to this point, ML-based approaches have not been 
developed for predicting ultimate resistance or optimiz-
ing the parameters of RC flat slabs with transverse rein-
forcement. This paper addressed these limitations by 
identifying geometry and mechanism factors that con-
tribute to failure resistance. It also optimized the mod-
el’s hyperparameters using Bayesian optimization, and 
utilized SHAP to interpret the complicated behavior. A 
comparison of ML algorithms with existing equations 
provided futher evidence of their superior performance.

After the introduction, the paper is organized as fol-
lows: Sect.  2 provides an overview of machine learning 
algorithms. In Sect. 3, 337 test specimens are divided into 
two groups (training set and test set) in order to support 
the ML-based models with Bayesian optimization. In 
Sect. 4, ML predictions are compared to existing meth-
ods along with an explanation provided by SHAP. Lastly, 
Sect. 5 concludes the study.

2  Methodology
2.1  A Brief Overview of Standard Algorithms
2.1.1  Support Vector Regression (SVR)
An algorithm known as Support Vector Regression (SVR) 
is used in supervised learning for the purpose of locat-
ing a regression plane in which all the sample points lie 
as close to the regression plane as possible (Scholkopf 
et al., 2021). To predict the regression, the SVR uses lin-
ear functions in a high dimensional space. Through the 
use of a loss function, the SVR minimizes the risk associ-
ated with regression estimation. It is capable of learning 
from large data sets and is robust to outliers (Sabzekar & 
Hasheminejad, 2021).

2.1.2  Decision Tree (DT)
Decision tree (DT) model (Bouras & Li, 2023) represent 
decisions and their consequences in a tree-like struc-
ture, in which every internal node represents a decision 
based on a specific feature, and each leaf node represents 

a predicted result. It is widely used in practice due to its 
simplicity and interpretability.

2.1.3  Random Forest (RF)
Random forest (RF) fabricated from decision trees is 
found to be more effective in bagging than individual 
algorithms, and often the RF is typically constructed 
using regression or classification trees as basis estimators 
(Schonlau & Zou, 2021). Instead of maximizing the met-
rics for attributes in the regression tree growth process, 
the RF determines what is the most appropriate solution 
among the attributes drawn. Using a simple model struc-
ture may result in inaccurate predictions, whereas using a 
complex model structure may result in overfitting. With 
more features and less overfitting, RF is faster, and can 
handle high-dimensional data well.

2.1.4  Extreme Gradient Boosting (XGBoost)
The extreme gradient boosting (XGBoost) is a very effi-
cient and powerful boosting learning algorithm (Chen 
et  al., 2023), which introduces several noteworthy 
improvements within the gradient boosting framework. 
As a consequence of the XGBoost, the objective function 
is further enhanced by including a risk factor in order to 
close the gap between accuracy and complexity and pre-
vent overfitting (Khan et al., 2023). Through this metric, 
the decision branch grows toward a more obvious over-
all structure. The XGBoost algorithm is used to continu-
ously optimize the structure and parameters of the model 
through an objective function, which in turn leads to 
more accurate predictions.

2.2  Bayesian Optimization (BO) Algorithm
An important aspect of supervised learning is the bias-
variance tradeoff (Bayar & Bilir, 2019; Su et  al., 2021). 
A well-tuned set of hyperparameters is crucial for ML 
models to achieve high cross validation accuracy. Grid-
search and random-search methods are used to enumer-
ate the parameters that have changed in optimizations 
(Nguyen et  al., 2021). It should be noted, however, that 
both methods require extensive programming skills 
and are generally slow when dealing with large data sets 
(Liang et  al., 2021). For maximum prediction accuracy, 
Bayesian optimization (BO) is proposed as an alternative 
to grid-searching and random-searching. Gaussian pro-
cess (GP) regression is used to determine prior functions, 
while expected improvement (EI) regression is used to 
determine acquisition functions. A flowchart of the BO 
algorithm can be found in Fig. 2, and the covariance ker-
nel can be expressed as follows in GP:
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where k is the covariance function, n is the sample size, K 
is corrupted by noise with zero mean and standard devia-
tion (σnoise).

According to this assumption, each observation in sam-
ple Yn+1 has a Gaussian distribution, and together with 
the observations in the first n iterations can be consid-
ered as a joint Gaussian distribution as follows (Seeger, 
2004):

where

(1)K =







k(X1,X1) · · · k(X1,Xn)
...

. . .
...

k(Xn,X1) · · · k(Xn,X1)






+ σ 2

noiseI

(2)Yn+1|D1:n ∼ N [µ(Xn+1), σ
2(Xn+1)+ σ 2

noise]

(3)µ(Xn+1) = kT (K + σ 2
noiseI)

−1Y1:n

(4)
σ 2(Xn+1) = k(Xn+1,Xn+1)− kT (K + σ 2

noiseI)
−1k

(5)k = [k(Xn+1,X1)k(Xn+1,X2) · · · k(Xn+1,Xn)]

Expect Improvement (EI) is implemented as follows 
(Jones et al., 1998):

A standard Gaussian distribution has two components: 
a cumulative distribution function (Ф) and a probability 
distribution function (φ), according to the sample space, 
ybest might be the tentative optimal value. In turn, the EI 
function is more significant at times when the posterior 
mean is large and the credible interval is wide, thereby 
preventing an accumulation of information.

2.3  Shapley Additive Explanations (SHAP)
By leveraging additive feature attribution, SHAP intends 
to examine ML-based models in a mathematically inter-
pretable manner. In the case of a model with input vari-
ables x = (x1, x2, …, xn), an original model f (x) can be 
written as follows:

where g(x′ ) stands for explanation model, amount of 
input features indicated by M, φ0 is the value that is 
obtained when all inputs are missing. Based on Lund-
berg & Lee (2017), Eq. (7) may be solved as:

where 
∣

∣z′
∣

∣ means the number of entries that are not zero 
in z′ ; fx ( z′) = f [hx ( z′)] = E [f(z) | zs]. There are a number 
of input variables that can have a positive or negative 
impact on a prediction through SHAP method, further 
detailed explanations refer to the reference (Mangalathu 
et al., 2020).

3  Analysis of Flat Slabs with Transverse 
Reinforcement

3.1  Existing Models for Resistance Prediction
In this section, two design codes (ACI 318-19, Eurocode 
2) and a mechanical model (CSCT) were used to predict 
the punching shear resistance of flat slabs with transverse 
reinforcement.

3.1.1  ACI 318 Code
In accordance with ACI 318-19 (ACI Committee, 2019), 
the punching shear strength is defined as follows:

(6)
EI(Xn) =[ybest − µ(Xn)]�

(

ybest − µ(Xn)

σ (Xn)

)

+ σ(Xn)ϕ

(

ybest − µ(Xn)

σ (Xn)

)

(7)f (x) = g(x′) = φ0 +

M
∑

i=1

φix
′
i

(8)

φi(f , x) =
∑

z′⊆x′

∣

∣z′
∣

∣!(M −
∣

∣z′
∣

∣− 1)!

M!

[

fx(z
′)− fx(z

′\i)
]

Fig. 2 Flowchart of Bayesian optimization
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where b0 is a perimeter located 0.5d away from the col-
umn face, d refers to the effective slab depth, fc’ repre-
sents the compressive strength of concrete cylinders, fywt 
is the yield stress of shear reinforcements, Asw stands for 
the area of one layer of shear reinforcements, Sr is the dis-
tance between the shear reinforcements, b0,out is the criti-
cal perimeter which is located at 0.5d from the last layer 
of shear reinforcements.

3.1.2  Eurocode 2
Based on Eurocode 2 (EN 1992-1, 2004), the punching 
shear strength for flat slabs with transverse reinforce-
ment can be calculated as follows:

where k stands for the size effect, ρ refers to the ratio 
of flexural reinforcement, fyw,ef represents the effective 
strength of the shear reinforcement.

3.1.3  Critical Shear Crack Theory (CSCT)
It has been proposed that punching shear failure hap-
pens when a shear crack opens on a slab of concrete, as 
described in the CSCT (Muttoni & Ruiz, 2019; Ruiz & 
Muttoni, 2009). This theory assumes that the crack open-
ing is proportional to the amount of rotation the slab 
experiences outside of the column region. In order to 
determine the slab load-rotation relationship, the follow-
ing equation can be used:

(9)VRk ,max = 0.5�s

√

f ′c b0d

(10)VRk ,cs = 0.17�s

√

f ′c b0d +
Aswfywtd

Sr

(11)VRk ,out = 0.17�s

√

f ′c b0,outd

(12)�s =

√

2

1+ 0.004d
≤ 1

(13)VRk ,max = 0.24

(

1−
fc

250

)

fc b0 d

(14)VRk ,cs = 0.135k(100ρfc)
1
3 b0d + 1.5

Aswfyw,ef d

Sr

(15)VRk ,out = 0.18k
(

100ρfc
)
1
3 b0,outd

(16)k =

(

1+

√

200

d

)

≤ 2

where V represents the shear force; rs is the slab’s radius; 
mR represents the moment of resistance. In order to cal-
culate the failure load for a slab that is rotating, the fol-
lowing failure criteria must also be taken into account:

where dg represents the maximum aggregate size; dg0 
refers to the size of the reference aggregate; b0,CSCT is the 
control perimeter set to 0.5d around the support region; 
Av refers to the shear reinforcement’s cross-section; σst 
refers to the stress that is developed during a rotation of a 
given direction; λ is a coefficient that depends on the type 
of shear reinforcement system.

3.2  Database of Flat Slabs with Transverse Reinforcement
3.2.1  Data Collection
As part of this study, independent datasets were derived 
from laboratory experiments performed on a slab-col-
umn connection with transverse reinforcement. During 
this study, only slabs with punching shear failures were 
considered. Thus, the dataset accurately represents the 
performance of slab-column connections with shear 
reinforcement under punching-shear failure mode, facili-
tating the investigation of the factors that affect punch-
ing shear resistance. Three hundred and thirty-seven 337 
experimental data points (CEP-FIP, 2001; Stein et  al., 
2007; Rojek & Keller, 2007; Ferreira et al., 2014; Walker, 
2014; Bartolac et  al., 2015; Jin et  al., 2017; Dam et  al., 
2017; Eom et al., 2018; Jang & Kang, 2021; Cantone et al., 
2019; Jin et al., 2019; Lewinski & Wiech, 2020; Said et al., 
2020; Lima et  al., 2020; Oliveira et  al., 2022; Shatarat & 
Salman, 2022) were obtained from published articles 
containing various types of axially symmetrically loaded 
interior columns. Most slab-column tests involve a sin-
gle column, often referred to as an isolated slab-column 
connection. The slab portion dimensions should repre-
sent the contraflexure points or negative moment zones. 
Among the major advantages of single column tests is the 
ability to test full-scale specimens. In this way, the shear 
stresses are not influenced by the size effect, which leads 
to continuous reductions in shear strength with increase 
in slab depth. In spite of this, they fail to adequately sim-
ulate the behavior of a slab-column connection in a real 

(17)ψ = 1.5
rs

d

fy

Es

(

V
/

8

mR

)1.5

(18)VR(ψ) =
3

4

b0,CSCTd
√

fc

1+ 15 ψd
dg0+dg

+

n
∑

i=1

σst,i(ψ)Av,i

(19)VR,max(ψ) = �
3

4

b0,CSCTd
√

fc

1+ 15 ψd
dg0+dg
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structure and do not take into account boundary condi-
tions, confinement, and in-plane forces. Furthermore, 
load redistribution is impossible. It is shown in Fig. 3 that 
the parameters fall within a certain range, and a distri-
bution of the parameter values is provided in Appendix. 
In which a is the distance from the column face to the 
moment inflection point of a slab (called shear span), d is 
the effective depth, c is the equivalent column width (cir-
cular cross-section is converted to a square cross-section 
in ACI 318-19), ρt is the flexural reinforcement ratio, b0 
is the critical perimeter located at 0.5d from the column 
face, Asw,d represents the shear reinforcement cross sec-
tion area within d from the column face, flc stands for 
the compressive strength of the concrete (φ = 150  mm, 
h = 300 mm), fy is the yield strength of the flexural rein-
forcement, fy,sw is the yield strength of the shear rein-
forcement. In most researches, bent up bars (BuB), 
stirrups (Sti), hooks (Ho), stud rails (StR), shear ladders 
(ShA), shear bonds (SB), and double headed studs (DHS) 
are used as shear reinforcement. According to Fig.  3, 
this dataset contains a wide variety of concrete strength 
and reinforcement data. To develop models that predict 
punching shear resistance accurately in a wide range of 
real-world situations, it is critical to gather this infor-
mation. Also, the resistance values demonstrated a wide 
range of punching shear strengths, suggesting that the 
dataset represents a variety of load conditions. According 
to some studies (Faridmehr et al., 2022; Liang et al., 2022; 
Mangalathu et al., 2021), similar data sizes are capable of 
providing good prediction results.

3.2.2  Variable Definitions for Inputs and Outputs
Data-driven models were used in ML algorithms to 
predict outcomes. However, they are based on an enor-
mous amount of data, disregarding prior knowledge 
of mechanisms. Data collection for engineering prob-
lems can be a difficult and labor-intensive process due 
to the amount of work involved. For ML approaches to 
be accurate and predictive, knowledge of mechanics is 
required. Table 1 shows the input and output variables, 
including mechanics-features: flexural (ρt fy) and shear 
(Asw,d fy,sw) reinforcement contributions; a root square 
of concrete compressive strength ( 

√

flc).

3.2.3  Normalization
The goal of normalization is to scale features on a simi-
lar basis. Normalization is a common method incor-
porated into gradient descent algorithms (Taffese & 
Espinosa-Leal, 2022). It’s controlled between [0,1] for 
uniform transformation processing of input data. As a 
means of reducing the statistical bias of parameters and 
improving the reliability of the ML models, the follow-
ing normalization procedure may be used:

where Xmin and Xmax are the minimum and maximum 
values of one class of input values, respectively.

(20)Xi,normalized =
Xi − Xmin

Xmax − Xmin

1.7851.1610.90.80.70.50.0567

46732425894733

0.4740.250.20.170.140.120.10.083

24464590555819

0.520.350.30.260.20.1360.1240.035

22327379822227

3.021.761.51.20.9980.80.5960.335

243410148584626

3.1762.45621.6781.3561.180.850.48

22388691522622

101.7924.6615.97127.85531

47584873493626

92.449.44035302519.613.3

23415556905220

917681593557500448339270

17364597586816

1100698597521441.7350294208

163457104574029

a (m)

d (m)

c (m)

t (%)

b0 (m)

Asw,d (cm2)

flc(MPa)

fy(MPa)

fy,sw(MPa)

5.192.171.561.190.80.50.14 0.294

14343776956516

Vn,exp (MN)
Specimens

Specimens

Specimens

Specimens

Specimens

Specimens

Specimens

Specimens

Specimens

Specimens

Fig. 3 Experimental distributions of features
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3.3  Development of ML Models
In this paper, ML models are implemented using fully 
automated Bayesian optimization for flat slabs with 
transverse reinforcement. To train four standard mod-
els (SVR, RF, DT, and XGBoost), features were used 
without selecting anything artificially. An optimiza-
tion algorithm based on Bayesian theory is then used 
to optimize selected features. A random partition of the 
dataset is made into training set and test set after nor-
malization, which comprise 80% and 20% of the overall 
database, respectively (refer to Fig.  4). Data from test 
set (20%), which have not been used in the training 

process, is used to validate the accuracy and reliability 
of the model.

3.4  Measurement of Performance
Several statistical variables can be used to evaluate pre-
dictive models’ efficiency, including coefficient of deter-
mination R2, mean absolute error (MAE), and root mean 
square error (RMSE). Generally, the prediction model 
is considered more accurate if R2 approaches one, while 
MAE and RMSE decline and approach zero, respectively. 
Measures of performance are expressed as follows:

where yn,pre is the predicted value, while yn,exp is the 
experimental result.

4  Results and Discussions
4.1  Comparison of Model Performance
An optimal set of hyperparameters was found after 50 
iterations (refer to Fig. 5), and the parameters of the ML 
algorithms are listed in Table  2. According to the BO’s 
objective function, its results are based on the averaged 
R2 of iterations, which results in:

where f is defined as the function, and xi is the input vari-
able in each ML model.

A statistical analysis of the predicted output is pro-
vided in Table 3. There is no doubt that training is more 

(21)R2 = 1−

∑n
i=1

(

yn,pre − yn,exp
)2

∑n
i=1

(

yn,exp −
1
n

∑n
i=1 yn,exp

)2

(22)MAE =
1

n

n
∑

i=1

∣

∣yn,pre − yn,exp
∣

∣

(23)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yn,pre − yn,exp
)2

(24)xbest = arg max f (x)

Table 1 Statistical summary of variables

Input/output Parameters Notation Units

Input x1: Effective depth of the slab d (m)

Input x2: Span to effective depth ratio a/d (−)

Input x3: Column width to critical perimeter ratio c/b0 (−)

Input x4: A root square of concrete compressive strength
√
flc (−)

Input x5: Contribution of the flexural reinforcement ρt fy (MPa)

Input x6: Contribution of the shear reinforcement Asw,d fy,sw (MN)

Output y: Failure load Vn,exp (MN)

Fig. 4 Flowchart for the learning algorithms with BO
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Fig. 5 R2 history of BO: a BO‑SVR. b BO‑RT. c BO‑DT. d BO‑XGBoost

Table 2 The main parameters of comparison models

Algorithm Initial basic parameters After Bayesian optimization

SVR C = 1; gamma = 1; kernel = ’linear’; degree = 3; coef0 = 0; toler‑
ance = 1e‑3; C = 1; epsilon = 0.1, shrinking = True

C = 0.96; gamma = 3.75; kernel = ’linear’; degree = 3; coef0 = 0; toler‑
ance = 1e‑3; C = 1; epsilon = 0.1, shrinking = True

RF n of estimators = 20; max depth = 3; criterion = ”squared error”; min 
samples split = 2; min samples leaf = 1;
random state = 1

n of estimators = 157; max depth = 15; criterion = ”squared error”; min 
samples split = 2; min samples leaf = 1;
random state = 1

DT Criterion = mse; splitter = best; min sample leaf = 1; min samples 
split = 2; max depth = 3; max features = None;
Random state = None; ccp alpha = 0.0

Criterion = mse; splitter = best; min sample leaf = 1; min samples 
split = 13; max depth = 4; max features = None;
Random state = None; ccp alpha = 0.0

XGBoost n estimators = 20; learning rate = 0.1;
max depth = 3; objective = ’linear’; booster = ’gbtree’; min child 
weight = 1; subsample = 1; colsample bytree = 1; alpha = 0; 
lambda = 1

n estimators = 238; learning rate = 0.257; max depth = 4; objective = ’ 
linear’; booster = ’gbtree’; min child weight = 1; subsample = 1; col‑
sample bytree = 1; alpha = 0; lambda = 1
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accurate than testing, in which case testing is an exact 
representation of the model’s performance. As far as pre-
diction results are concerned, BO-XGBoost performs 
well in both training and testing sets, with R2, MAE, and 
RMSE of 0.92, 0.091 MN, and 0.14 MN in the test set, 
respectively.

In comparison with the original standard algorithms, 
BO models obtained a larger correlation coefficient 
(R2) and a smaller error metric (MAE, RMSE) than the 
original standard algorithms. According to this study, 
Bayesian optimization is still capable of improving the 
performance of conventional machine learning algo-
rithms, while the XGBoost-based model offers advanced 
capabilities.

4.2  Comparison with Design Codes and CSCT Equations
According to Fig. 6, the proposed model is compared to 
three existing models that have already been developed. 
In Table  4, the precision and reliability of the capacity 
estimated through a model was assessed by comparing 
the actual resistance with the resistance determined by 
the model (Vn,exp / Vn,pre). Fig.  6 a-c shows that the two 
design codes and the equation for CSCT skew conserva-
tively, especially for ACI 318 code. A possible limitation 
is that only Eurocode 2 and CSCT consider the effect of 
flexural reinforcement ratio ρt on resistance. Additionally, 
the CSCT takes into account the yield strength of flexural 
reinforcement fy. According to some studies (Derogar 
et al., 2022; Liang et al., 2022), their absence can lead to 
a reduction in accuracy. Due to safety requirements, the 
coefficients in the design codes are modified while they 
are not for the mechanical model (CSCT) (Tian et  al., 
2009; Enipaul et al., 2015; Deifalla, 2021). If the model is 
not revised, prediction errors may result as evidenced by 
punching shear resistances exceeding 1000 kN.

A comparison of the models suggests that they were 
over-simplified, and some influential factors need to be 
considered. In Fig.  6d–k, scatter plots of ML models in 

training and test sets are illustrated in order to visualize 
prediction outcomes. As shown in Fig.  6d-k, conven-
tional ML algorithms (SVR, RF, DT, and XGBoost) pro-
duce a large predicted deviation, and their dispersion 
degrees are much greater than those obtained following 
Bayesian optimization.

The comparison in Table 4 shows BO-XGBoost to have 
the best prediction performance among all the mod-
els, with the highest R2 (0.92), lowest MAE (0.091 MN), 
RMSE (0.14 MN), and COV (0.13) in test set. Based 
on comparisons between the BO-XGBoost model and 
Eurocode 2, which is considered to be the most precise 
model among the design equations (Magalathu et  al., 
2021), RMSE values and MAE values are significantly 
reduced by 46.2% and 46.5%, respectively.

This is due to the fact that BO-XGBoost takes into 
account all input variables that could affect the strength 
of shear reinforced slabs, which are well optimized by 
BO. The mechanics of failure resistance ( 

√

flc , ρt fy, and 
Asw,d fy,sw) and the geometric properties (d, a/d, and c/
b0) of slabs must be considered in order to calculate the 
response of real structures. In light of the limitations 
of the existing equations, ML-based models may be 
able to solve the problem of predicting punching shear 
resistance.

4.3  SHAP‑Based Importance Factor Indentification
Despite its high predictive accuracy, the BO-XGBoost 
model generally behaves as a black-box, unable to inter-
pret the relationship between input variables and resist-
ance. It is possible to interpret several parameters with 
a BO-XGBoost model using SHAP, which has also been 
confirmed in other studies (Mangulathu et  al., 2021; 
Liang et al., 2022).

4.3.1  SHAP Values
An integral measure of the significance of a feature is the 
SHAP value. A Shapley value is a conditional expectation 

Table 3 Performance comparison of prediction models

ML models R2 MAE (MN) RMSE (MN)

Training Test Training Test Training Test

SVR 0.85 0.80 0.16 0.15 0.26 0.22

RF 0.89 0.76 0.15 0.18 0.22 0.24

DT 0.87 0.72 0.16 0.19 0.24 0.26

XGBoost 0.90 0.82 0.14 0.14 0.22 0.21

BO‑SVR 0.85 0.80 0.16 0.15 0.26 0.22

BO‑RF 0.98 0.90 0.048 0.10 0.094 0.15

BO‑DT 0.992 0.89 0.033 0.11 0.059 0.16

BO‑XGBoost 0.999 0.92 0.003 0.091 0.005 0.14
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Fig. 6 Comparison with existing strength models. a ACI 318‑19. b Eurocode 2. c CSCT. d SVR. e RF. f DT. g XGBoost. h BO‑SVR. i BO‑RF. j BO‑DT. k 
BO‑XGBoost
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function, which is a solution to Eq.  8. In Fig.  7, Each 
SHAP value represents the change in the anticipated 
model prediction when that feature is conditioned on. 
In the case of nonlinear models or features that are not 
independent, the features are added to the underlying 

expectation, and the SHAP value (VSHAP) is calculated by 
averaging the individualφi values.

4.3.2  Global Interpretations
As the most reliable model for interpretation by the 
SHAP method, BO-XGBoost is selected for this section. 
This figure (Fig. 8a) illustrates the importance factors for 
input variables, ranked in accordance with their impact 
on prediction results. One should note that the slab’s 
effective depth (d), whose SHAP value is 0.39, is the most 
significant. A second critical feature was the shear rein-
forcement (Asw,d fy,sw), with a SHAP value of 0.11, which 
contributed approximately 28% of the d, roughly twice as 

Table 4 Results of the comparison

Equations AVG (Vn,exp/Vn,pre) COV (Vn,exp/Vn,pre) MAE (MN) RMSE (MN) R2

ACI 318 1.84 0.23 0.42 0.56 0.65

Eurocode 2 1.09 0.22 0.17 0.26 0.84

CSCT 1.41 0.41 0.32 0.48 0.46

SVR (test) 1.07 0.36 0.15 0.22 0.80

RF (test) 0.95 0.25 0.18 0.24 0.76

DT (test) 0.95 0.29 0.19 0.26 0.72

XGBoost (test) 0.99 0.22 0.14 0.21 0.82

BO‑SVR (test) 1.07 0.35 0.15 0.22 0.80

BO‑RF (test) 0.98 0.14 0.10 0.15 0.90

BO‑DT (test) 1.01 0.18 0.11 0.16 0.89

BO‑XGBoost (test) 0.99 0.13 0.091 0.14 0.92

Fig. 7 SHAP values

Fig. 8 Global interpretations. a Feature importance of input variables. b The summary of SHAP values
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much as 
√

flc and (ρt fy). This also indicates that increas-
ing the contribution of shear reinforcement (Asw,d fy,sw) 
can have double impact than enhancing the strength of 
concrete ( 

√

flc ) and flexural reinforcement (ρt fy). There 
are SHAP values of 0.043 and 0.041 for (c/b0) and (a/d), 
although their importance is low, they cannot be ignored.

There is an apparent lack of clarity in Fig.  8a regard-
ing whether each parameter affects prediction positively 
or negatively, but this can be clarified by examining the 
SHAP summary plots, as shown in Fig.  8b. On a scale 
from small to large, each variable is colored blue or red. 
Input variables (d, Asw,d fy,sw, ρt fy, 

√

flc , and c/b0) are con-
sidered to have a positive impact on prediction results. 
As a result, flab slabs with high values on these five input 
variables are more likely to get higher punching shear 
resistance. In addition, the impact of (a/d) is not signifi-
cant, but can still be considered as a negative factor.

4.3.3  Feature Dependency
By examining the relationship between a particular vari-
able and its most closely related factors, it is also possible 
to explain BO-XGBoost’s prediction mechanism based 
on SHAP. A higher SHAP value indicates an improve-
ment in punching shear resistance. The results of this 
analysis (refer to Fig. 9) show that SHAP values increase 
with additional values for variables d, (c/b0), ( 

√

flc ), (ρt fy), 
and (Asw,d fy,sw), respectively, and decrease with increasing 
value of (a/d).

The influence of d on punching shear resistance has 
also been determined through experimental researches 
(Muttoni & Ruiz, 2019; Pang et al., 2021). In the case of a 
slab whose effective depth increases from 100 to 400 mm, 
the SHAP value increases from (−  0.5) to (+ 1.5), and 
its rate increases is much faster than other parameters 
(Fig.  9a), especially when the d exceeds 180  mm, it has 
an positive effect on the punching capacity. Also, calcula-
tions using the design codes show that ACI 318-19 and 
EC2-2004 provide unconservative predictions for slabs 
with d greater than 200 mm, but provide improved pre-
dictions for slabs with d less than 200 mm (Derogar et al., 
2022). Furthermore, it is evident from the results that 
standard calculation methods are incapable of identify-
ing precisely the contribution of parameter d, while ML-
based models can provide a clearer explanation of the 
relationship between parameters and outcomes, along 
with the ability to continuously improve the formula.

In spite of the fact that increasing d can enhance the 
resistance of slabs, it can also increase the risk of brit-
tle punching failures. A common design approach for 
improving punching shear capacity is to use transverse 
reinforcements (Oliveira et  al., 2021; Shatarat & Sal-
man, 2022). As the (Asw,d fy,sw) between 0 and 5 MN, 

the SHAP value increases from (−  0.25) to (+ 1.25), 
in which the punching resistance increases only if 
the shear reinforcement contributes more than 1 MN 
(Fig. 9f ).

The SHAP value decreases from (+ 0.3) to (− 0.2) with 
the concrete compressive strength decreasing from 80 
to 20 MPa (Fig. 9d). There may be a reason for this, that 
concrete crack sizes and widths increase with decreas-
ing concrete strength in punching shear loads. It is gen-
erally accepted that larger cracks in concrete reduce 
its capability of transferring shear, due primarily to the 
reduced possibility of interlocking between aggregate 
grains on opposite sides of the shear crack. The failure 
of slabs in punching shear is more likely to occur when 
the flc increases (Hallgren, 1996), maybe because the 
steel bar yields before the slab fails. These results are 
also consistent with those reported in this study.

There is no doubt that (ρt fy) has a positive impact on 
the flat slabs, however it should be noted that previous 
literature (Elstner & Hognestad, 1956; Faridmehr et al., 
2022) indicated that when the value of ρt is very small, 
the slab will fail before the shear reinforcement has fully 
worked. Fig. 9e indicates that SHAP will be greater than 
zero only when (ρt fy) is greater than 6 MPa, which will 
result in a positive impact on punching shear resist-
ance. A possible explanation is that when the flexural 
reinforcement is insufficient, wider cracks may appear 
inside the slab-column connection, which would result 
in early failure of the structure and greatly reduce the 
effectiveness of transverse reinforcement.

The ACI 318-19 and EC2-2004 do not take all (a/d) 
into account when calculating the punching shear 
resistance of flat slabs. In Fig. 9b, SHAP value increased 
from (− 0.10) to (+ 0.10) while (a/d) decreased from 10 
to 2, where (a/d) less than 5 is associated with a positive 
effect on punching shear resistance. It can be attributed 
to the development of arch mechanisms in slabs as well 
as the effects of friction at the support (Lovrovich & 
Mclean, 1990).

In the case of a slab whose (c/b0) increases from 0.1 
to 0.2, the SHAP value increases from (− 0.2) to (+ 0.2) 
(Fig. 9c), especially when the (c/b0) exceeds 0.14, it has 
an positive effect on the punching shear resistance. A 
higher (c/b0) limits the formation of the punching shear 
cone, however current design methods often ignore 
this impact.

In conclusion, the feature importance analysis indi-
cates that the d, (a/d), (c/b0), ( 

√

flc  ), (ρt fy), and (Asw,d 
fy,sw) played a crucial role in the predictive performance 
of the optimized model. As noted, different parameters 
contribute to punching shear resistance to varying 
degrees within a certain range.
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Fig. 9 Dependency plots for features
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5  Conclusions
In previous studies, the punching shear resistance of 
flat slabs with transverse reinforcement was extensively 
investigated, with a variety of empirical predictions 
being made. It is possible to reduce bias and variance in 
these predictions by incorporating mechanics features 
into data-driven approaches. For this purpose, 337 test 
results were collected and analyzed using BO hybrid 
methods based on four common algorithms (SVR, RF, 
DT, and XGBoost). For accuracy evaluation, the pro-
posed ML-based models were compared to design 
codes (ACI 318, Eurocode 2) as well as CSCT equa-
tions. Results of the analysis allow the following con-
clusions to be drawn:

(1) While the Eurocode 2 performs better than the ACI 
318 and CSCT, it still leaves a considerable gap compared 
with ML algorithms in terms of calculation results.

(2) As compared to other standard algorithms (SVR, 
RF, DT), XGBoost achieved optimal results with R2, 
MAE, and RMSE values of 0.82, 0.14MN, and 0.21MN, 
respectively.

(3) After Bayesian optimization, BO-XGBoost showed 
significantly lower RMSE and MAE values than XGBoost 
by 33% and 35%, respectively, and did not display any 
obvious bias toward the input variables which is a critical 
characteristic of an ideal predictive model.

(4) Based on SHAP explanation, the most significant 
variable affecting punching shear resistance is d, while 
(a/d) has the least impact and (Asw,d fy,sw) can have a dou-
ble impact compared to ( 

√

flc ) and (ρt fy). According to 
this information, the design considerations can be prior-
itized and the design process can be improved.

(5) This study concentrated on the prediction of punch-
ing shear resistance without considering any other failure 
modes, which may also result in some limitations, such as 
brittle failure occurring as the value of d increases. The 
failure modes of flat slabs should therefore be considered 
in future research.
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