ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Hardened Properties of Green Self-Consolidating Concrete Made with Steel Slag Coarse Aggregates under Hot Conditions

Author(s): Hisham Qasrawi

Publication: Materials Journal

Volume: 117

Issue: 1

Appears on pages(s): 107-118

Keywords: fresh properties; hot weather; modulus of elasticity; recycled steel slag; self-consolidating concrete; shrinkage; strength; strength development

DOI: 10.14359/51719072

Date: 1/1/2020

Abstract:
Green self-consolidating concrete (SCC) is the aim of the construction industry nowadays. The accumulation of steel slag wastes causes severe environmental problems. These wastes can be recycled and replace natural aggregates, resulting in sustainable green SCC. In this research, natural aggregates in SCC are replaced, wholly or partly, by steel slag coarse aggregates (SSA) that were produced by crushing by-product boulders obtained from the steel industry. The fresh properties, (workability, stability, and bleeding), can all be attained when the suitable amount of SSA is used. SSA concrete increased the air content. Higher values are reported under hot conditions. The study shows that the 28-day compressive strength of SCC increased by approximately 10% when natural aggregate is replaced by SSA. However, adverse effects are reported when the ratio of SSA is more than 50%. Under hot weather, the strength was less and the optimum replacement ratio is 25%. The tensile strength of SCC increased by approximately 20% when natural aggregate is replaced by SSA. Adverse effects are reported when the ratio of SSA is more than 75%. Under hot weather, the same is observed but the value of the 28-day strength was lower. Special strength development mathematical relations are obtained and discussed. The modulus of elasticity increased by the increase in slag. The optimum value was at 50% for both conditions. An adverse effect is observed when the ratio of slag exceeds 75%. The drying shrinkage of concrete was lower for concrete containing SSA.