ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Behavior of High-Strength Concrete and Normal-Strength Concrete Columns under Blast Loading

Author(s): Amer Hammoud and Hassan Aoude

Publication: Symposium Paper

Volume: 341

Issue:

Appears on pages(s): 1-26

Keywords: High-strength concrete, Columns, Blast, Shock Tube

DOI: 10.14359/51727020

Date: 6/30/2020

Abstract:
This paper presents the results from tests examining the performance of high-strength concrete (HSC) and normal-strength concrete (NSC) columns subjected to blast loading. As part of the study six columns built with varying concrete strengths were tested under simulated blast loads using a shock-tube. In addition to the effect of concrete strength, the effects of longitudinal steel ratio and transverse steel detailing were also investigated. The experimental results demonstrate that the HSC and NSC columns showed similar blast performance in terms of overall displacement response, blast capacity, damage and failure mode. However, when considering the results at equivalent blasts, doubling the concrete strength from 40 MPa to 80 MPa (6 to 12 ksi) resulted in 10%-20% reductions in maximum displacements. On the other hand, increasing the longitudinal steel ratio from ρ = 1.7% to 3.4% was found to increase blast capacity, while also reducing maximum displacements by 40-50%. The results also show that decreasing the tie spacing (from d/2 to d/4, where d is the section depth) improved blast performance by reducing peak displacements by 20-40% at equivalent blasts. The use of seismic ties also prevented bar buckling and reduced the extent of damage at failure. As part of the analytical study the response of the HSC columns was predicted using single-degree-of-freedom (SDOF) analysis. The resistance functions were developed using dynamic material properties, sectional analysis and a lumped inelasticity approach. The SDOF procedure was able to predict the blast response of HSC columns with reasonable accuracy, with an average error of 14%. A numerical parametric study examining the effects of concrete strength, steel ratio and tie spacing in larger-scale columns with 350 mm x 350 mm (14 in. x 14 in.) section was also conducted. The results of the numerical study confirm the conclusions from the experiments but indicate the need for further blast research on the effect of transverse steel detailing in larger-scale HSC columns.