ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 179 Abstracts search results

Document: 

SP355

Date: 

July 1, 2022

Author(s):

Sponsored by: ACI Committees 130, 201, 209, 212

Publication:

Symposium Papers

Volume:

355

Abstract:

The Canada Centre for Mineral and Energy Technology (CANMET) of Natural Resources of Canada, Ottawa, ON, Canada, has played a significant role for more than 40 years in the broad area of concrete technology in Canada. In recent years, CANMET has become increasingly involved in research and development dealing with supplementary cemen¬titious materials, high-performance normalweight and lightweight concretes, and alkali-aggregate reactions. As part of CANMET’s technology transfer program, an international symposium on Advances in Concrete Technology was sponsored jointly with the American Concrete Institute (ACI) and other organizations in Athens, Greece, in May 1992. In June 1995, CANMET, in association with ACI and other organizations in Canada and the United Staes, sponsored the Second CANMET/ACI Symposium on Advances in Concrete Technology in Las Vegas, NV, USA. For the Athens symposium, the CANMET publication “Advances in Concrete Technology,” constituted the proceedings of the symposium. The proceedings from the Las Vegas symposium were published by ACI as SP-154. In August 1997, CANMET, in association with ACI and other organizations in Canada and New Zealand, sponsored the Third CANMET/ACI Symposium on Advances in Concrete Technology in Auckland, New Zealand. The main purpose of the symposium was to bring together representatives from industry, universities, and government agencies to present the latest information on concrete technology, and to explore new areas of research and development. Thirty-three refereed papers from 15 countries were presented and distributed at the symposium. The proceedings were published as ACI SP-171. In June 1998, CANMET, in association with ACI, Japan Concrete Institute (JCI), and several other organizations in Canada and Japan, sponsored the Fourth CANMET/ACI Conference on Recent Advances in Concrete Technology in Tokushima, Japan. More than 80 papers from 20 countries were received and reviewed in accordance with the policies of ACI. Sixty-one refereed papers were accepted for presentation at the conference and for publication as ACI SP-179. In addition to the refereed papers, more than 30 papers were presented and distributed at the conference. In July-August 2001, CANMET, in association with ACI and several organizations in Singapore, sponsored the Fifth CANMET/ACI Conference on Recent Advances in Concrete Technology in Singapore. More than 100 papers from 25 countries were received and reviewed in accordance with the policies of ACI. Forty-six refereed and more than 25 additional papers were accepted for presentation at the conference. The proceedings of the conference were published as ACI SP-200. In June 2003, CANMET, in association with ACI and several organizations in Romania, sponsored the Sixth CANMET/ACI Conference on Recent Advances in Concrete Technology in Bucharest, Romania. More than 40 papers presented at the conference were distributed “as received,” and no formal ACI special publication was published. In May 2004, CANMET, in association with ACI and several other organizations in the United States, sponsored the Seventh CANMET/ACI Conference on Recent Advances in Concrete Technology in Las Vegas, NV. Seventeen refereed papers from more than 10 countries were presented and distributed at the conference. The proceedings of the conference, consisting of the refereed papers, were published as ACI SP-222. In addition to the refereed papers, 20 additional papers were presented and distributed at the conference. In May 2006, CANMET, in association with ACI and several other organizations in Canada and the United States, sponsored the Eighth CANMET/ACI Conference on Recent Advances in Concrete Technology in Montreal, QC, Canada. The proceedings of the conference, consisting of 17 refereed papers, were published as ACI SP-235. In addition to the refereed papers, more than 30 additional papers were presented and distributed at the conference. In May 2007, CANMET, in association with ACI and several other organizations in Canada, Europe, and the United States, sponsored the Ninth CANMET/ACI Conference on Recent Advances in Concrete Technology in Warsaw, Poland. The proceedings of the conference, consisting of 10 refereed papers, were published as ACI SP-243. More than 20 additional papers were presented and distributed at the conference. In October 2009, ACI, in association with several organizations in Canada, Europe and the United States, sponsored the Tenth ACI Conference on Advances in Concrete Technology in Seville, Spain. The proceedings of the conference, consisting of 20 refereed papers, were published as ACI SP-261. In addition to the refereed papers, more than 20 additional papers were presented at the conference and published in a supplementary papers volume. In May 2010, the Committee for the Organization of International Conferences (COIC) (formerly CANMET/ACI Conferences), in association with the Chinese Ceramics Society (CCS) and several other organizations in China, sponsored the Eleventh International Conference on Advances in Concrete Technology and Sustainability Issues in Jinan, China. More than 40 papers were presented at the conference. The proceedings of the conference were published by the CCS, Beijing, China. In October 2012, the COIC, in association with ACI, sponsored the Twelfth International Conference on Advances in Concrete Technology and Sustainability Issues in Prague, Czech Republic. The proceedings of the conference, consisting of more than 30 refereed papers, were published as ACI SP-288. In addition to the refereed papers, more than 40 other papers were presented at the conference and published in a supple¬mentary papers volume. In July 2015, the COIC, in association with ACI, sponsored the Thirteenth International Conference on Advances in Concrete Technology and Sustainability Issues in Ottawa, ON, Canada. The proceedings of the conference, consisting of 28 refereed papers, were published by ACI as SP-303. In addition to the refereed papers, more than 40 other papers were presented at the conference and published in a supplementary papers volume. In October 2018, the CCS and the China Academy of Building Research (CABR), Beijing China, in association with the COIC sponsored the Fourteenth International Conference on Recent Advances in Concrete Technology and Sustainable Issues in Beijing, China. The proceedings of the conference, consisting of 19 refereed papers, were published by ACI as SP-330. In addition to the refereed papers, more than 52 other papers were presented at the conference and published in a supplementary papers volume. In July 2022, after a postponement for the Covid-19 pandemic, the ACI Italy Chapter and the University of Bergamo, Italy, sponsored the Fifteenth International Conference on Recent Advances in Concrete Technology and Sustainable Issues in Milan, Italy. The proceedings of the conference, consisting of 44 refereed papers, were published by ACI as SP-355. In addition to the refereed papers, about 20 other papers were presented at the conference and published in a supplementary papers volume. The main topics of the papers presented at the conference include: the deterioration of concrete structures; the corrosion of metallic reinforcement; the repair techniques of damaged concrete structures by using shrinkage-compensating cement-based mixtures; the protection of concrete structures by special materials to obtain watertight concrete; the reduction of the damage caused by alkali-silica reaction; the use of mineral additions such as fly ash, silica fume, and ground-granulated blast-furnace slag to improve the durability of concrete structures; and the production of concrete by reducing gas emissions and energy consumption such as the use of binders alternative to portland cement (alkali activated materials, geopolymers, sulphoaluminate cement) and recycling of wastes coming from different sources. Thanks are extended to the reviewers for the valuable efforts in reviewing all the manuscripts published in the conference proceedings and in the supplementary volume. The guidance from Dr. V. M. Malhotra and Prof. M. Collepardi, the Honorary Chairpersons of the conference, is sincerely appreciated. Also, acknowledged is the support the American Concrete Institute for the publication of the proceedings (ACI SP-355). The Editors Dr. Denny Coffetti Prof. Luigi Coppola Dr. Terence Holland

DOI:

10.14359/51736101


Document: 

SP-355_37

Date: 

July 1, 2022

Author(s):

Mario Collepardi, Silvia Collepardi, Roberto Troli

Publication:

Symposium Papers

Volume:

355

Abstract:

The present paper shows the study of a mixture design of the concrete used in the reinforced foundations of the bridge on the Straits of Messina in Italy. A cube compressive characteristic strength of 35 MPa (5,075 psi) is required for the foundation concrete. Due to the peculiar shape of the concrete foundations (completely embedded in the excavated ground), the damages caused by the thermal stress, the steel corrosion, and the alkali-silica reaction cannot be monitored and repaired. Therefore, a concrete structure must be designed without any damage for at least 200 years due to the very important role of this structure from a social point of view. In order to guarantee this long-term durability, there are two problems to be faced and solved: 1) the heat of cement hydration could cause cracks inside the foundation due to thermal gradients between the hotter nucleus of the massive structure and the colder peripheral areas; 2) the corrosion of the metallic reinforcements caused by the reaction between the metallic iron and the oxygen (O2) present in the air to an extent of about 20%; 3) the alkali-silica reaction causing a local disruption in the concrete. All these problems can be solved using a blast-furnace slag cement such as CEM III B 32.5 R characterized by a very small heat of hydration and adopting a ground coarse aggregate with a maximum size as large as 32 mm (1.28 in): the choice of this aggregate produces a reduction in the amount of mixing water and then of the cement content and reduces the volume of the entrapped air at about 1.3% by concrete volume. This amount of O2 would cause the corrosion of a negligible amount of iron corresponding to only 10 to 13 g (0.4 to 0.5 oz) of steel in 1 m3 (1.31 yd3) of concrete of each foundation. In order to prevent any ingress of air from the environment, the top of the foundation should be protected by self-compacting, self-compressing, and self-curing concrete.

DOI:

10.14359/51736049


Document: 

SP-355_05

Date: 

July 1, 2022

Author(s):

Frank S. Ong, Michael Myers, Mark Bury, Trevor Larch, Charles Nmai, Paul Seiler, Lesley S. C. Ko

Publication:

Symposium Papers

Volume:

355

Abstract:

Alkali silica reactivity (ASR) is a reaction of OH- in pore solution with reactive silica aggregate to form an absorptive, deleterious gel and the expansion of mortar or concrete bar specimens is used as a measure of the magnitude of the reaction. Several test methods have been developed to measure ASR expansion and, currently, the ASTM C1567, ASTM C1260, and ASTM C1293 standards are the most widely used test methods. In both ASTM C1567 and ASTM C1260 test methods, mortar bars are immersed in 1N NaOH solution at 80 oC. During the immersion process, two phenomena can occur (1) leaching out of ionic species and (2) NaOH penetrating the mortar bars. The results of these two events might underestimate the ASR mitigating effect of soluble salts, such as Ca(NO2)2. A new ASR expansion test method has been developed and proposed to address these two issues and the details of the new test method will be presented in this paper. In addition, the role of calcium ions (Ca2+) in ASR has been investigated and debated for many years. Using the new test method, the effects of Ca2+ additions on ASR expansion have been investigated. The studies show that if the Ca2+ addition is relatively lower than the alkali content in the system, ASR expansion is increased. However, if the Ca2+ addition is relatively higher than the alkali content in the system, ASR expansion is reduced. If the Ca2+ addition is high enough, the ASR expansion is inhibited. Potential ASR mitigating options based on these findings are presented.

DOI:

10.14359/51736011


Document: 

SP-354_22

Date: 

July 1, 2022

Author(s):

Mario Collepardi, Jean Jacob Ogoumah Olagot and Roberto Troli

Publication:

Symposium Papers

Volume:

354

Abstract:

The present paper preliminarily illustrates the mechanism of damages caused by the alkali-silica reaction (ASR) between the high alkali content of the dry shake-hardener due to the high cement content on the top of the concrete industrial floors and the alkali-reactive coarse aggregate in the concrete substrate. To mitigate or prevent these damages a special dry shake-hardener, based on the partial replacement of the Portland cement by siliceous fly ash, is used. The beneficial influence of the fly ash, as well as that of other fine pozzolanic materials, is due to the distribution of a very large number of amorphous silica-based fine particles which can potentially react with the alkali in the same way as the amorphous or badly crystallized silica of the alkali-reactive coarse aggregates. The introduction of a very high number of pozzolanic particles significantly reduces the alkali availability for the reaction with the few alkali-reactive coarse aggregates. In other words, the alkalis instead of concentrating their aggression on a few grains of the alkali-reactive coarse aggregates, usually 5 to 15 mm (2 to 6 in.) in size, spread their action on a large number of very fine pozzolanic particles so that their expansive and destructive power is lost. However, another problem can arise when the Portland cement is partially replaced by fly ash due to the longer setting time, particularly in cold weather, of the dry shake-hardener, so that the workers must wait a very long time before the mechanical troweling and the opening of the finished surface to the pedestrian traffic. To avoid this drawback a combined use of the siliceous fly ash and a setting accelerator, based on tetra-hydrate calcium nitrate in powder form [4H2O∙Ca(NO3)2 > 4H2O∙CaO∙N2O5 > H4CN2] has been studied at three different temperatures: 35°C (95°F), 20°C (68°F) and 5°C (41°F). In warm weather, at temperatures as high as 35°C (95°F), there is no need for H4CN2 since the Portland cement hydration occurs at a very great rate and only the dry shake-hardener containing fly ash without H4CN2 can be applied within few hours and incorporated into the concrete substrate. At 20°C (68°F) the delay in the setting times caused by the partial replacement of Portland cement by fly ash can be compensated by the use of H4CN2 at 1% by weight of the cementitious materials. In cold weather, such as that caused by a temperature as low as 5°C (41°F), a much higher percentage of H4CN2, up to 5% by weight of the cementitious materials, must be used to reduce the setting times at approximately the same values as those recorded at 20°C (68°F) when the dry shake-hardener without fly ash is used.

DOI:

10.14359/51736078


Document: 

SP-349_53

Date: 

April 22, 2021

Author(s):

Thomas, M.D.A., Smith, D. and Moffatt, E.G., Kasaniya, M.

Publication:

Symposium Papers

Volume:

349

Abstract:

This paper presents data on the durability of concrete produced using ground glass as a pozzolan. Various sources of glass were used including soda glass, E-glass and Pyrex glass. All the materials showed excellent pozzolanic activity when ground to pass 75-microns. The use of ground glass resulted in substantial reductions in permeability and chloride penetrability, and improved resistance to sulfate attack. Air-entrained concrete containing glass showed good freeze-thaw resistance. Low alkali E-glass and borosilicate glass were effective in preventing deleterious expansion due to alkali-silica reaction (ASR). Bottle glass, which contains substantial amounts of alkali, was not efficacious with regards to ASR. The inclusion of bottle glass results in very substantial increases to the pore solution alkalinity and this can result in substantial increases in expansion in concrete containing reactive aggregate and low-alkali cement. It is shown that the accelerated mortar bar test is not suitable for evaluating the impact of high-alkali materials on ASR as the alkalis contributed by the cementing materials are released when the mortar bars are masked by the conditions of the test (first immersed in hot water and then in hot NaOH solution).

DOI:

10.14359/51732786


12345...>>

Results Per Page