ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 915 Abstracts search results

Document: 

23-096

Date: 

March 15, 2024

Author(s):

Zoi G. Ralli and Stavroula J. Pantazopoulou

Publication:

Materials Journal

Abstract:

In light of the effort for decarbonization of the energy sector, it is believed that common geopolymer binding materials such as fly ash may eventually become scarce, and new geological aluminosilicate materials should be explored as alternative binders in geopolymer concrete. A novel, tension-hardening geopolymer concrete (THGC) that incorporates high amounts of semi-reactive quarry wastes (Metagabbro) as a precursor and coarse quarry sand (granite) was developed in this study using geopolymer formulations. The material was optimized based on the particle packing theory and was characterized in terms of mechanical, physical, and durability properties (i.e., compressive, tensile, flexural resistance, Young’s Modulus, Poisson’s ratio; absorption, drying shrinkage, abrasion, and coefficient of thermal expansion; chloride ion penetration, sulfate, and salt-scaling resistance). The developed THGC with an air-dry density of 1,940 kg/m3 [121 lb/ft3], incorporates short steel fibers at a volume ratio of 2% and is highly ductile in both uniaxial tension and compression (uniaxial tensile strain capacity of 0.6% at an 80% post-peak residual tensile strength). Using DIC, multiple crack formation was observed in the strain-hardening phase of the tension response. In compression the material maintained its integrity beyond the peak load, having attained 1.8% compressive strain at 80% post-peak residual strength whereas upon further reduction to 50% residual strength, the sustained axial and lateral strains were 2.5% and 3.5%, respectively. The material exhibited low permeability to chloride ions and significant abrasion resistance due to the high contents of Metagabbro powder and granite sand. The enhanced properties of the material, combined with the complete elimination of ordinary Portland cement from the mix, hold promise for the development of sustainable and resilient structural materials with low CO2j, emissions while also enabling the innovative disposal of wastes as active binding components.

DOI:

10.14359/51740704


Document: 

21-381

Date: 

December 1, 2023

Author(s):

Othman AlShareedah and Somayeh Nassiri

Publication:

Materials Journal

Volume:

120

Issue:

6

Abstract:

Pervious concrete is a stormwater management practice used in the United States, Europe, China, Japan, and many other countries. Yet the design of pervious concrete mixtures to balance strength and permeability requires more research. Sphere packing models of pervious concrete were used in compressive strength testing simulations using the discrete element method with a cohesive contact law. First, three mixtures with varied water-cement ratios (w/c) and porosities were used for model development and validation. Next, an extensive database of simulated compressive strength and tested permeability was created, including 21 porosities at three w/c. Analysis of the database showed that for pavement applications where high permeability and strength are required, the advised porosity is 0.26 to 0.30, producing average strengths of 14.4, 11.1, and 7.7 MPa for w/c of 0.25, 0.30, and 0.35. The model can guide the mixture design to meet target performance metrics, save materials and maintenance costs, and extend the pavement life.

DOI:

10.14359/51739157


Document: 

22-200

Date: 

September 1, 2023

Author(s):

S. Fernando, C. Gunasekara, D. W. Law, M. C. M. Nasvi, S. Setunge, and R. Dissanayake

Publication:

Materials Journal

Volume:

120

Issue:

5

Abstract:

The creep and drying shrinkage of two alkali-activated concretes produced with low-calcium fly ash and rice husk ash (RHA) were investigated over a period of 1 year. The compressive strength of 100% low-calcium fly ash (100NFA) concrete and the concrete having 10% RHA replacement (10RHA) decreased from 49.8 to 37.7 MPa (7.22 to 5.47 ksi) and 30.2 to 18.3 MPa (4.38 to 2.65 ksi), respectively, between 28 and 365 days. The imbalance in the dissolution rate of the raw materials in the blended system (10RHA) could negatively influence the strength properties, which leads to poor matrix integrity and a highly porous structure when compared with 100NFA. The presence of the micro-aggregates due to the block polymerization provides the effect of increasing the aggregate content in the 100NFA concrete compared with the 10RHA concrete, which is hypothesized as one of the reasons creep and shrinkage properties deteriorated in 10RHA.

DOI:

10.14359/51738891


Document: 

22-221

Date: 

September 1, 2023

Author(s):

C. F. Hollmann, L. Zucchetti, D. C. C. Dal Molin, and A. B. Masuero

Publication:

Materials Journal

Volume:

120

Issue:

5

Abstract:

Self-healing is a process by which concrete is able to recover its properties after the appearance of cracks, which can improve mechanical properties and durability and reduce the permeability of concrete. Self-healing materials can be incorporated into concrete to contribute to crack closure. This study aims to evaluate the influence of crystalline admixtures and silica fume on the self-healing of concrete cracks. The rapid chloride penetration test was performed on cracked and uncracked samples, from which it was possible to estimate the service life of concretes. The concretes were characterized by tests of compressive strength and water absorption by capillarity. The use of crystalline admixtures did not have a negative influence on concrete properties, but did not favor the chloride penetration resistance. The concrete with silica fume showed the lowest charge passed and highest values of estimated service life.

DOI:

10.14359/51738892


Document: 

21-483

Date: 

September 1, 2023

Author(s):

Nima Mohammadian Tabrizi, Davood Mostofinejad, and Mohammad Reza Eftekhar

Publication:

Materials Journal

Volume:

120

Issue:

5

Abstract:

This paper is aimed at investigating the effects of different fiber inclusion on the mechanical properties of ultra-high-performance concrete (UHPC) by adding mineral admixtures as cement replacement materials to reduce production costs and CO2 emissions of UHPC. Throughout this research, 21 mixture designs containing four cement substitution materials (silica fume, slag cement, limestone powder, and quartz powder) and three fibers (steel, synthetic macrofibers, and polypropylene) under wet and combined (autoclave, oven, and water) curing were developed. To investigate the mechanical properties in this research, a total of 336 specimens were cast to evaluate compressive strength, the modulus of rupture (MOR), and the toughness index. The findings revealed that at the combined curing, regarded as a new procedure, all levels of cement replacement recorded a compressive strength higher than 150 MPa (21.76 ksi). Furthermore, the mechanical properties of the mixture design containing microsilica and slag (up to 15%) were found to be higher than other cement substitutes. Also, it was shown that all levels of the fiber presented the MOR significantly close together, and samples made of synthetic macrofibers and steel fibers exhibited deflection-hardening behavior after cracking. The mixture design containing microsilica, slag, limestone powder, and quartzpowder, despite the significant replacement of cement (approximately 50%) by substitution materials, experienced a slight drop in strength. Therefore, the development of this mixture is optimal both economically and environmentally.

DOI:

10.14359/51738888


12345...>>

Results Per Page