ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 12 Abstracts search results

Document: 

SP108-07

Date: 

August 1, 1988

Author(s):

B. Mobasher and T. M. Mitchell

Publication:

Symposium Papers

Volume:

108

Abstract:

The new rapid chloride permeability test, in which chloride ions are driven into concrete samples electrically over a 6-hr period, is becoming widely used and has been accepted as an American Association of State and Highway Transportation Officials (AASHTO) standard, T277. This paper summarizes the results of an extensive series of laboratory tests with the new method. Results of an interlaboratory test program provide single-operator and multilaboratory coefficients of variation suitable for use in a precision statement in the standard versions of the method. Several possible revisions to the AASHTO standard procedure are examined, but further study is necessary before any can be accepted. Test results on specimens with diameters other than the standard 3.75 in. (95 mm) called for in T277 are found to be easily adjusted to allow comparisons with standard size specimens. Several fundamental properties of concrete, namely, water-cement ratio, coarse aggregate type and gradation, and air content, are shown to affect chloride permeability.

DOI:

10.14359/3621


Document: 

SP108-06

Date: 

August 1, 1988

Author(s):

K. Schonlin and H.K. Hilsorf

Publication:

Symposium Papers

Volume:

108

Abstract:

For the determination of the permeability on concrete discs, a rapid test method has been developed. No special devices are required to fix the test apparatus to the specimen. Air permeability of the concrete can be measured within a period of about 15 min. Laboratory experiments show a close correlation between the measured permeability coefficient and the duration of curing, type of cement, w/c ratio and the content of fly ash.

DOI:

10.14359/3608


Document: 

SP108-09

Date: 

August 1, 1988

Author(s):

B. R. Sullivan

Publication:

Symposium Papers

Volume:

108

Abstract:

A testing system which can accommodate up to seven samples simultaneously with computer-controlled data acquisition, analysis, and reporting is described. The system consists of seven core holders of the Hassler type which can handle cylindrical samples ranging from 1-1/2 to 4 in. in diameter and from 4 to 11 in. in length. Confining and driving pressures can be independently varied up to 4000 psi. The test medium can be either liquid or gas including brine, since all tubing and containers are stainless steel. Flow is determined by pressure increase in a collector tank for gas and change in liquid level in a pipette column for liquid. Four pressure transducers per core holder are used to monitor all pressure levels during a test. A computer-based data acquisition system is used to scan up to seven tests simultaneously and record all data on a disc. Upon termination of a test, flow and permeability are computed and plotted against time and a report is printed for the test. The data are saved permanently on the disk and a backup copy is transferred to a floppy disk for safe storage. Sample preparation, sealing, and testing procedures are explained. Data analysis and typical results are presented on salt cores and concrete samples.

DOI:

10.14359/3660


Document: 

SP108-11

Date: 

August 1, 1988

Author(s):

D. Whiting

Publication:

Symposium Papers

Volume:

108

Abstract:

Study of permeability was made using six concrete mixtures ranging in water-to-cementitious material (w-c) ratio from 0.26 to 0.75. Concrete specimens were tested for permeability to water and air, permeability to chloride ions (rapid and long-term), volume of permeable voids, and porosity. Results confirm that permeability is a direct function of w-c ratio. The addition of silica fume results in even greater decreases in permeability than would be anticipated based solely on w-c ratio. A period of initial moist curing of at least seven days is essential for achieving low permeability. Results also indicate that rapid test procedures offer a reasonable alternative to more lengthy and complex conventional permeability tests.

DOI:

10.14359/2186


Document: 

SP108-02

Date: 

August 1, 1988

Author(s):

S. L. Marusin

Publication:

Symposium Papers

Volume:

108

Abstract:

This paper summarizes the results of permeability studies that have been undertaken since 1979. The research used a test procedure developed during the NCHRP Project 12-19A, "Concrete Sealers for Protection of Bridge Structures", which was reprinted in 1981 as NCHRP Report No. 244. This test method utilizes 10 cm concrete cubes, and chloride ion penetration is determined at 4 depths after 21 days exposure to 15 percent NaCl solution. The test results show that lowering of water-cement ratio in portland cement concrete or presence of superplasticizers, polymer admixtures, and silica fumes are able to significantly reduce concrete permeability.

DOI:

10.14359/2147


123

Results Per Page