International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 12 Abstracts search results

Document: 

SP112-02

Date: 

January 1, 1989

Author(s):

A. Alexander and H. T. Thornton

Publication:

Symposium Papers

Volume:

112

Abstract:

A new improved prototype ultrasonic pitch-catch (two-transducer) and pulse echo (one-transducer) system has been developed for concrete. Signal generation and detection is done with piezoelectric crystals. A literature search revealed that no piezoelectric pulse-echo system had been developed for the ultrasonic range ( > 20 kHz) and that pitch-catch measurements needed further development. No commercial system could be found on the market for making pitch-catch measurements. Research by the U.S. Army Engineer Waterways Experiment Station has resulted in the development of a 200-kHz pitch-catch system with a signal-to-noise ratio of 18 and a pulse-echo system with a SNR of 8. The mass and dimensions of the improved system have been reduced significantly from the prior state-of-the-art system. The WES system works well for thickness measurements of portland-cement concrete pavement and can indicate the presence of voids.

DOI:

10.14359/3655


Document: 

SP112-07

Date: 

January 1, 1989

Author(s):

G. V. Teodoru

Publication:

Symposium Papers

Volume:

112

Abstract:

Aim is to analyze the correlations between several nondestructive measured values (ultrasonic velocity and attenuation, rebound number) and the compressive strength of concrete. A computational program performs a step-by-step analysis. First, isolated linear correlations are established for each one of the three nondestructive tests. Then the results are compared with each other in the sense of a general multiple correlation of the values. Since the results obtained from the nondestructive tests are equally scattered, the program determines interactively, in a second step, the multiple coefficients of correlation and restarts the analysis several times by tentatively disregarding the presumably bad experimental results. Since the measured values also comprise a large spectrum of magnitude, limits of validity of the assumed correlations are investigated concomitantly with the process of analysis. A last step is performed to identify a tendency of deviation of the single and multiple correlations from the basic linear ones.

DOI:

10.14359/3715


Document: 

SP112-08

Date: 

January 1, 1989

Author(s):

T. R. Harrell

Publication:

Symposium Papers

Volume:

112

Abstract:

A case history of methods used to evaluate the allowable form removal time for a large diameter tunnel concrete lining is presented. To meet schedule requirements, a concrete placement was to be made every alternate day. A triad of testing was done to evaluate the time at which the reusable, self-propelled, steel-skinned form could be stripped from an existing placement. This testing consisted of field-cured cylinders and nondestructive testing that included embedded thermocouples in the concrete placements and penetration-resistance testing. Reference curves and tables were developed for use in the form removal evaluation. Statistical methods were used on test data obtained from results of testing done with the actual concrete mix to be used in the placements. Control curves were then developed. Target values were selected to be used in determining when the concrete was of sufficient strength to allow for the form removal.

DOI:

10.14359/3726


Document: 

SP112-04

Date: 

January 1, 1989

Author(s):

M. Ohtsu

Publication:

Symposium Papers

Volume:

112

Abstract:

On the basis of the acoustic emission (AE) measuring technique, a diagnostic method for nondestructive evaluation of cracks in concrete is proposed. The diagnostics consist of a mechanical criterion of crack initiation, a quantitative waveform analysis of AE, the evaluation of deterioration by a test of core specimens, and the ultrasonic spectroscopic investigation of cracked members. Results of basic studies on these methods are summarized. Results of basic studies confirm the feasibility and the usefulness of the proposed method as diagnostics of cracks in concrete structures.

DOI:

10.14359/2840


Document: 

SP112-05

Date: 

January 1, 1989

Author(s):

A. K. Maji and S.P. Shah

Publication:

Symposium Papers

Volume:

112

Abstract:

The fracture process of a composite material involves crushing or slippage of adjacent particles, microcracking, etc., resulting in changes in the load-versus-displacement behavior. A study of the fracture process is necessary to develop a rational material model. Laser holographic interferometry was applied to study the whole field deformation pattern. Speckle photography was used to measure quantitatively displacement discontinuities at bond cracks at various stages of loading. Acoustic emission (AE) techniques were applied to monitor microseismic activities resulting from the various fracture phenomena. The rate of microfracture was measured from the AE event rates. A source location algorithm was used to calculate the locations of the AE events. Specimens were made with different aggregate and void sizes to study their effect on crack patterns and load-displacement behaviors.

DOI:

10.14359/2846


123

Results Per Page 




Edit Module Settings to define Page Content Reviewer