ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 14 Abstracts search results
Document:
SP118-02
Date:
January 1, 1990
Author(s):
R. J. Ward, K. Yamanobe, V. C. Li, and S. Backer
Publication:
Symposium Papers
Volume:
118
Abstract:
Results of notched beam, direct tension, splitting tension, compression, shear beam, and flexural tests on plain mortar and on mortar reinforced with different volume fractions of short acrylic fibers are reported. An indirect J-integral technique is employed to determine the tension-softening curve and thus the tensile strength, the fracture energy, and the critical crack opening from the notched beam test results. As the volume fraction of fibers is increased, the strength in shear and flexure, the fracture energy, and the critical crack opening all increase, the tensile strength remains essentially constant, and the compressive strength shows some reduction. The characteristic length lch is used as a material property to characterize the post-peak tensile behavior. The shear and flexural strengths are related to the normalized dimension d/lch, and good agreement between the experimental results and theoretical predictions of decreasing strength with increasing d/lch is found.
DOI:
10.14359/2878
SP118
Editors: Victor C. Li and Zdenek P. Bazant
SP-118 This Special Publication of 13 papers presents advances in fracture mechanics involving characterization, resistance measurements, computation tools, and material toughness. The document is divided into two sections. One section deals with the application of fracture mechanics to cementitious materials. The other section covers the application of fracture mechanics to concrete structures.
10.14359/14151
SP118-01
Victor c. Li
Reviews the tensile failure of concrete structures subjected to a variety of practical loading. Attention is focused on the propensity of fracture failure of concrete structures and the fracture properties of cementitious materials. The relevance of fracture mechanics to modern concrete design code is highlighted.
10.14359/2908
SP118-09
Jin-Ken Kim, Seok-Hong Eo, and Hong-Kee Park
In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal, or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large-size member can resist some stress if there is no initial crack. In this study, the empirical models for uniaxial compressive strength that are derived based on nonlinear fracture mechanics are proposed by the regression analysis with the existing test data of large-size specimens.
10.14359/2962
SP118-10
A. Carpinteri
Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behavior. Both virtual crack propagation model and cohesive limit analysis show a trend toward brittle behavior and catastrophical events for large structural sizes. Such a trend is fully confirmed by more refined finite element investigations and by experimental testing on plain and reinforced concrete members.
10.14359/2968
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer