International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 20 Abstracts search results

Document: 

SP123-12

Date: 

January 1, 1991

Author(s):

O. Joh, Y. Goto and T. Shibata

Publication:

Symposium Papers

Volume:

123

Abstract:

Geometrical configurations of reinforced concrete beam-column joints in actual building structures are quite varied because the configurations depend upon the number of structural members connecting the joints, the shapes of cross section of the members, the eccentricity among the axes of members, and so on. Focusing the interest mainly on the eccentricity from these factors, studies on seismic behavior of reinforced concrete interior beam-column joints in one-way frames with eccentricity are carried out with a classificatory examination, an investigation of a building destroyed by a strong earthquake, and a survey of previous studies and the authors' experiments. From the investigation of the destroyed building, it is suggested that the heavy eccentricity between columns and beams caused torsional moments in the columns and joints, causing severe damage. From the survey of three previous experiments in which one-sided eccentric joint specimens with wide columns and deep beams were subjected to lateral loading, it is shown that effective width and/or torsional moment should be considered for calculating the strength and stiffness of frames. Experimental results indicate that such eccentricities caused twisting of the columns and joints, resulting in reduction of the shear strength of the members. From the results of the classification examination and of the authors' tests in which five beam-column subassemblages with several types of eccentricity and beam width were subjected to cyclic lateral forces, it is observed that joints with one-sided eccentric beams suffer larger torsional moment around column axes, narrowing the effective joint width. Therefore, the shear cracking stress and the deformability of joints are reduced.

DOI:

10.14359/2863


Document: 

SP123-13

Date: 

January 1, 1991

Author(s):

S. Sugano, T. Nagashima, H. Kimura, and A. Ichikawa

Publication:

Symposium Papers

Volume:

123

Abstract:

Cyclic loading tests of eight half-scale interior beam-column subassemblages using high-strength materials were carried out to investigate their seismic behavior under high joint shear stress vn ranging from 140 to 200 kg/cmý. Concretes with three nominal compressive strengths; 400, 600, and 800 kg/cmý was used. High-strength reinforcing bars with a yield strength of 4000 and 6000 kg/cmý were provided as beam longitudinal reinforcement. Reinforcing bars with a yield strength of 8700 kg/cmý were used for joint transverse reinforcement. To prevent premature shear failure in joints and significant slippage of beam bars through joints, four different types of joint detail were planned. They included high-strength bars for joint reinforcement, anchor plates attached to beam longitudinal bars in the joint, relocation of beam plastic hinges away from the joint, and joint reinforcement using steel plates. The beam-column joints using high-strength concrete of 600 kg/cmý or higher showed ductile behavior up to 5 percent story drift, even under conditions of high join-shear stress. No significant bar slippage or bond deterioration was observed, including the joints using high-strength beam main bars. The high-strength transverse reinforcement worked effectively as joint reinforcement, as indicated by considerably high strains measured in joint hoops. The relocation of beam plastic hinges away from the joint reduced damage of the beam-column joint. Based on the test results, guidelines for design of such reinforced concrete beam-column joints are presented.

DOI:

10.14359/2866


Document: 

SP123-01

Date: 

January 1, 1991

Author(s):

PC. Cheung, T Paulay, and R. Park

Publication:

Symposium Papers

Volume:

123

Abstract:

As part of a United States/New Zealand/Japan/China collaborative research project, interior and exterior beam-column joint subassemblages with floor slabs of prototype two-way and one-way reinforced concrete building frames were designed for earthquake resistance using the current New Zealand concrete design code, NZS 3101:1982. Three full-scale subassemblages as designed were constructed and tested under quasi-static cyclic loading which simulated severe earthquake actions. The overall performance of each subassemblage during the tests was satisfactory in terms of strength and ductility. The joint core and column remained essentially undamaged while plastic hinges formed in the beams. The strong column-weak beam behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Although the joint cores of the subassemblages remained in the elastic range, joint core shear deformations contributed significantly to the interstorey drifts. Also, a significant proportion of the slab bars in tension contributed to the negative moment flexural strength of the beams. The performance of the one-way joint was superior to the performance of the two way joints.

DOI:

10.14359/10258


Document: 

SP123-02

Date: 

January 1, 1991

Author(s):

Y. Kurose, G. N. Guimaraes, L. Zuhua, M. E. Kreger, and J.O. Jirsa

Publication:

Symposium Papers

Volume:

123

Abstract:

Three reinforced concrete beam-column connections, each with a slab were tested under the U.S.-Japan-New Zealand-China cooperative research program on design of beam-column connections. Two of the specimens were subjected to both unidirectional and bidirectional cyclic loads. Results of the tests are described with the aid of story shear drift angle relations, story shear orbits, measured joint shear deformations, and plots of drift angle components. Various methods for calculating joint shear strength are evaluated in light of the test results. Test data are also used to determine slab effective widths for use in calculation of uncracked beam stiffness and beam flexural capacity.

DOI:

10.14359/2807


Document: 

SP123-03

Date: 

January 1, 1991

Author(s):

Zhu Bolong and Chen Yuzhou

Publication:

Symposium Papers

Volume:

123

Abstract:

The results of three full-scale reinforced concrete beam-column joint specimens subjected to one- and two-directional reversed loading are presented in this paper. The influences on aseismic behavior of beam-column joints with different loading systems and monolithic slabs have been analyzed. Also, the relevant provisions for joints in the Chinese design code for reinforced concrete structures have been checked by test results, and some recommendations for beam-column joint design are given.

DOI:

10.14359/2815


1234

Results Per Page 




Edit Module Settings to define Page Content Reviewer