International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 20 Abstracts search results

Document: 

SP123-19

Date: 

January 1, 1991

Author(s):

Y. Kurose, K. Nagami, and Y. Saito

Publication:

Symposium Papers

Volume:

123

Abstract:

Precast concrete systems are mainly used to construct residential buildings in Japan. The systems include precast concrete wall structures for low-to-medium-rise buildings and frame structures for medium to high-rise buildings. Most of the precast members are produced in fabricating plants and shipped to the site. Beam-column joints in precast systems are designed using essentially the same design philosophy but considerably different details, as used in cast-in-place construction. The details of the joints are usually examined from the structural viewpoint by experimental tests and from the construction viewpoint by mock-up tests. This paper is intended to give an overview of beam-column joints used in precast concrete moment-resisting frame structures. Aseismic design and details of the joints are described and a few examples of construction practice are illustrated. Emphasis is placed on joints in high-rise construction using precast concrete systems.

DOI:

10.14359/2907


Document: 

SP123-15

Date: 

January 1, 1991

Author(s):

T. Kaku and H. Asakusa

Publication:

Symposium Papers

Volume:

123

Abstract:

Bond and/or anchorage performances of longitudinal bars in reinforced concrete beam-column joints were outlined, based on the investigations performed in the United States, New Zealand, and Japan in the past 10 years. The effects of joint size-bar diameter ratio, development length, geometry of bent bar, column axial force, and transverse reinforcement were discussed. The bond deterioration caused such undesirable phenomena as pinching in force-story drift hysteresis curves, increasing the slip deformation at the beam-column interface, changing the shear transfer mechanism in the joint core, and decreasing the flexural strength of the adjoining members. Bars passing through an interior joint and bent bars in an exterior joint were treated separately to make the discussion clear.

DOI:

10.14359/2874


Document: 

SP123-18

Date: 

January 1, 1991

Author(s):

Kenzo Yoshioka and Masataka Sekine

Publication:

Symposium Papers

Volume:

123

Abstract:

Describes two types of prefabricated beam-column joints designed to save manpower requirements in construction work. The first type consists of making precast subassemblages with beam-column joints and integrated beams. Through-holes are provided in the vertical direction in the beam-column joint to accommodate column reinforcing bars (Type 1). The second type consists of precast subassemblages with beam-column joints and columns integrated. Through holes are provided in the horizontal direction in the beam-column joint to accommodate beam reinforcing bars (Type 2). Column or beam reinforcing bars are passed through the holes in these precast subassemblages; the parts are integrated by subsequent grouting of the holes with high-strength mortar. The earthquake resistance of these precast subassemblages was investigated with cyclic loading tests. The systems are intended for use in a 13-story reinforced concrete building, designed so that its collapse mechanism would be of the beam-yielding type. With Type 1 precast subassemblages, column reinforcing bars grouted and fixed inside sleeve-pipe holes are not subject to stresses extending into the plastic range. Therefore, by suitably designing the anchorage lengths of beam reinforcing bars inside the joints, there will be no slippage of the beam bars. A ductility of more than six times the yielding displacement may be attained. With Type 2 subassemblages, the beam reinforcing bars grouted and fixed inside sleeve-pipe holes are subjected to repeated stresses extending into the plastic range, such that bond deterioration occurs inside the joints. Strength declines at large deformations exceeding three times the yield displacement, and satisfactory ductility is not obtained. Taking test results into consideration, precast subassemblages of the first type are recommended for adoption in the 13-story building.

DOI:

10.14359/2876


Document: 

SP123-07

Date: 

January 1, 1991

Author(s):

T. Kaku and H. Asakusa

Publication:

Symposium Papers

Volume:

123

Abstract:

Reversed cyclic loading tests were carried out for 18 reinforced concrete exterior beam-column subassemblages designed in accordance with the principle that yielding of adjoining beam or column precedes joint shear failure. Column axial force, amount of joint hoop reinforcement, existence of intermediate column bars, and moment-resisting capacity ratio of beam to column were selected as experimental variables. Test results showed that the ductility of the subassemblages increased by column axial compressive force and the amount of the joint hoop reinforcements. The existence of the intermediate column bars was also effective in increasing the ductility. On the basis of thorough consideration of the test results, a critical cumulative displacement ductility factor was quantified as a function of the test variables, and was ascertained to be a very effective value to evaluate the aseismic performance of exterior beam-column subassemblages.

DOI:

10.14359/2842


Document: 

SP123-10

Date: 

January 1, 1991

Author(s):

P. C. Cheung, T. Paulay, and R. Park

Publication:

Symposium Papers

Volume:

123

Abstract:

Proposes mechanisms of the transfer of forces to beam-column joints, generated under typical seismic actions in cast-in-place reinforced concrete slabs. One of the main objectives of the paper is to review behavioral models that should assist designers in visualizing the flow of internal forces in beam-column-slab subassemblages. It is postulated that membrane forces play a dominant role and that contributions of other actions, such as bending in slabs and torsion in transverse beams, are relatively unimportant, particularly when significant ductility demands arise during seismic motions. Locations at which slab reinforcements transmit tensile forces by means of bond to the surrounding concrete are considered to be particularly important in the assessment of the enhancement of beam flexural strength. The description of these phenomena is related to observations made during the testing of isolated reinforced concrete beam-column subassemblages with slabs simulating one-and two-way cast-in-place floor systems. Subsequently, the findings are extended to describe the perceived behavior of continuous floor slabs supported by beams of multibay ductile frames. The relevance of the flexural strength enhancement of beams to the design of beam-column joints and columns is briefly examined. Design recommendations are made, particularly with respect to the effective width of the tension flanges.

DOI:

10.14359/2856


1234

Results Per Page 




Edit Module Settings to define Page Content Reviewer