International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 20 Abstracts search results

Document: 

SP123

Date: 

January 1, 1991

Author(s):

Editor: James O. Jirsa

Publication:

Symposium Papers

Volume:

123

Abstract:

SP123 This volume is a collection of technical papers on the aspects of design of beam-column joints for seismic resistance. Nineteen papers are divided into the following groups. - Tests conducted on specimens designed using current codes but with the same general geometry and a specified loading history. (4 papers) - Design recommendations -- Japan. (1 paper) - Influence of joint geometry on strength and deformation characteristics. (8 papers) - Influence of bond on joint performance. (4 papers) - Joint in precast systems and with high-strength materials. (2 papers)

DOI:

10.14359/14219


Document: 

SP123-16

Date: 

January 1, 1991

Author(s):

Roberto T. Leon

Publication:

Symposium Papers

Volume:

123

Abstract:

Presents a critical review of current design provisions for shear and anchorage in beam-column joints subjected to large seismic actions. When current design limits are compared with experimental data, the results indicate that if short anchorage lengths and large shear stress are used simultaneously, large losses of bond transfer capacity and stiffness will occur. The performance of joints based on different levels of joint shear stress and anchorage lengths is discussed, and an empirical formula linking anchorage and shear is proposed based on the limited tests data available on bar slip.

DOI:

10.14359/2884


Document: 

SP123-17

Date: 

January 1, 1991

Author(s):

T. Tada and T. Takeda

Publication:

Symposium Papers

Volume:

123

Abstract:

Describes a theoretical investigation into the hysteretic behavior of hinges in reinforced concrete members subjected to seismic loading. The most important feature of this study is the quantitative evaluation of bond deterioration process between the main reinforcement steel and concrete. An analytical procedure is formulated and a computer program for assessing bond deterioration is developed. End hinges and adjacent bond regions in reinforced concrete members are represented by mathematical models that consist of steel elements, concrete fiber elements, and bond links. Assuming appropriate constitutive curves for these elements, the equilibrium condition of section forces in a hinge is obtained iteratively. This analytical method is applied to the problem of slippage of beam bars in reinforced concrete cruciform beam-column joint subassemblages. The analytical results aptly explain the transient processes of structural behavior observed in experiments, and the quantitative assessment of bond deterioration processes is accomplished satisfactorily.

DOI:

10.14359/2891


Document: 

SP123-19

Date: 

January 1, 1991

Author(s):

Y. Kurose, K. Nagami, and Y. Saito

Publication:

Symposium Papers

Volume:

123

Abstract:

Precast concrete systems are mainly used to construct residential buildings in Japan. The systems include precast concrete wall structures for low-to-medium-rise buildings and frame structures for medium to high-rise buildings. Most of the precast members are produced in fabricating plants and shipped to the site. Beam-column joints in precast systems are designed using essentially the same design philosophy but considerably different details, as used in cast-in-place construction. The details of the joints are usually examined from the structural viewpoint by experimental tests and from the construction viewpoint by mock-up tests. This paper is intended to give an overview of beam-column joints used in precast concrete moment-resisting frame structures. Aseismic design and details of the joints are described and a few examples of construction practice are illustrated. Emphasis is placed on joints in high-rise construction using precast concrete systems.

DOI:

10.14359/2907


Document: 

SP123-05

Date: 

January 1, 1991

Author(s):

Shunsuke Otani

Publication:

Symposium Papers

Volume:

123

Abstract:

The Architectural Institute of Japan (AIJ) published its 1988 draft design guidelines for earthquake-resistant reinforced concrete buildings based on ultimate strength concept as a first attempt to develop an ultimate strength design procedure in Japan. This paper introduces the general concept of the design procedure, and explains in detail the design requirements and background information for reinforced concrete beam-column joints of the AIJ guidelines. Based on experimental evidence, the amount of lateral reinforcement in the joint required is significantly reduced from ACI requirements.

DOI:

10.14359/2829


1234

Results Per Page 




Edit Module Settings to define Page Content Reviewer