ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 20 Abstracts search results
Document:
SP123-06
Date:
January 1, 1991
Author(s):
S. Fujii and S. Morita
Publication:
Symposium Papers
Volume:
123
Abstract:
Eight 1/3 scale specimens, consisting of four pairs of interior and exterior beam-column subassemblages in one-way frames, were tested. To investigate the basic joint shear strength, the test program was so determined that joint shear failure occurred in most specimens prior to beam yielding by using high-strength steel for beam bars. Test variables were beam bar strength, column axial load, and amount of joint hoop. The test results showed: 1) the increase of column axial load level from f'c / 12 to f'c / 4 did not influence the ultimate shear strength of the interior joints, but this increase in column axial load improved the shear strength of the exterior joints nearly 10 percent; 2) the ultimate shear strength represented in terms of nominal shear stress was f'c / 4 for interior joints; 3) when the shear strength of the exterior joints was evaluated on the basis of projected length of hooked beam bars instead of total column depth, nearly the same strength was obtained for both types of joint; 4) the increase of joint shear reinforcement ratio from 0.41 to 1.1 percent did not noticeably effect the behavior for both types of joint; 5) once joint shear strain reached to 0.5 percent degradation of shear rigidity was accelerated under subsequent load reversals.
DOI:
10.14359/2836
SP123-07
T. Kaku and H. Asakusa
Reversed cyclic loading tests were carried out for 18 reinforced concrete exterior beam-column subassemblages designed in accordance with the principle that yielding of adjoining beam or column precedes joint shear failure. Column axial force, amount of joint hoop reinforcement, existence of intermediate column bars, and moment-resisting capacity ratio of beam to column were selected as experimental variables. Test results showed that the ductility of the subassemblages increased by column axial compressive force and the amount of the joint hoop reinforcements. The existence of the intermediate column bars was also effective in increasing the ductility. On the basis of thorough consideration of the test results, a critical cumulative displacement ductility factor was quantified as a function of the test variables, and was ascertained to be a very effective value to evaluate the aseismic performance of exterior beam-column subassemblages.
10.14359/2842
SP123-08
O. Joh, Y. Goto, and T. Shibata
Two series of experiments on the performance of beam-column joints in reinforced concrete frames were carried out. In Series I, the influence of the transverse reinforcement in the joint and/or the portion of the beam end connected to the column was investigated. From the test results, it is derived that heavy transverse joint reinforcement may reduce the slippage of beam bars in the joint and enhance the joint stiffness after cracking, and the similar transverse shear type reinforcement in the beam end has little effect on relieving the stiffness after degradation of a frame due to the deterioration of bond along the beam bars within the joint. In Series II, the effects of locating a plastic hinge in the beam away from the column face were examined. The test results show that the bond deterioration of beam bars within the joint may be prevented effectively by plastic hinge relocation, but shear-sliding deformation may occur at the plastic hinge away from the column face owing to the inevitable increased shear force in the beam. A new arrangement of beam bars to improve the behavior of the plastic hinge is proposed.
10.14359/2849
SP123-02
Y. Kurose, G. N. Guimaraes, L. Zuhua, M. E. Kreger, and J.O. Jirsa
Three reinforced concrete beam-column connections, each with a slab were tested under the U.S.-Japan-New Zealand-China cooperative research program on design of beam-column connections. Two of the specimens were subjected to both unidirectional and bidirectional cyclic loads. Results of the tests are described with the aid of story shear drift angle relations, story shear orbits, measured joint shear deformations, and plots of drift angle components. Various methods for calculating joint shear strength are evaluated in light of the test results. Test data are also used to determine slab effective widths for use in calculation of uncracked beam stiffness and beam flexural capacity.
10.14359/2807
SP123-03
Zhu Bolong and Chen Yuzhou
The results of three full-scale reinforced concrete beam-column joint specimens subjected to one- and two-directional reversed loading are presented in this paper. The influences on aseismic behavior of beam-column joints with different loading systems and monolithic slabs have been analyzed. Also, the relevant provisions for joints in the Chinese design code for reinforced concrete structures have been checked by test results, and some recommendations for beam-column joint design are given.
10.14359/2815
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer