ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 17 Abstracts search results
Document:
SP133-08
Date:
September 1, 1992
Author(s):
Irfan A. Alvi and bilal M. Ayyub
Publication:
Symposium Papers
Volume:
133
Abstract:
In virtually all areas of structural engineering, including the increasingly well-known area of structural reliability assessment, it is commonly assumed that failures will occur suddenly and instantaneously in given failure modes. This assumption affords a valuable simplification of complex real-world problems. However, many failure modes do not obey this assumption, including most serviceability failure modes, strength failure modes of ductile component and/or redundant systems, and failure modes based on cumulative damage. For these cases, a formulation is required with which the transition from complete survival to complete failure can be modeled as being gradual and continuous, and comprised of partial failure levels. This paper proposes such a formulation along with corresponding methodologies for structural reliability assessment and reliability-based design. Various statistical and entropy-based measures which can be used to help characterize the results of the structural reliability assessment are also suggested. Application of the proposed structural reliability assessment and reliability-based design methodologies is illustrated with an example problem involving deflection failure of a reinforced concrete beam. Some potential applications of the proposed methodologies include probabilistic design and code calibration for failure modes modeled as having gradual and continuous failure transitions.
DOI:
10.14359/2867
SP133-09
Shivaprasad T. Kudlapur and Edward F. Nawy
Studies are limited on the early age performance of high-strength cold weather concretes and their shear strength interaction in cold weather. This paper presents shear transfer strength characteristics between regular high-strength concrete and (i) methyl methacrylate-based polymer concrete and (ii) magnesium phosphate based concrete in subfreezing temperatures. Analytical expressions were developed based on shear transfer hypothesis and verified by experimental results. The experimental study included tests on cylinders and L-shaped push off specimens to determine the early age shear interlock and shear frictional resistance between high-strength regular portland cement concrete and cold weather high-strength concretes as is experienced in rehabilitation of bridge decks and other infrastructure systems. Studies indicated that at early age of 24 hours, shear transfer strength of 1400 psi can be obtained with the use of appropriate material and shear reinforcement. The study also indicated the ACI 318-89 code limits on the shear-friction strength are too conservative even at early ages for high-strength cold weather concretes.
10.14359/2872
SP133-10
Sami W. Tabsh
Concrete bridges in the United States constitute about fifty percent of the total number of highway bridges. Recent studies indicate that many of these bridges deteriorate due to age, corrosion of reinforcement, fatigue, cracking and spalling of concrete, and/or human error. Limited funds are available for rehabilitation, strengthening, and replacement. Therefore, there is a need for methods to identify the parts of concrete girder bridges most sensitive to damage using reliability models. This may help lower the costs of checking, inspection, and repair. Load and resistance sensitivity functions for the ultimate flexural capacity limit state of simply supported bridge girders are included. The study indicates that the reliability of bridge girders depends mostly on the strength and location of steel.
10.14359/2875
SP133-02
Andrew Scanlon and Ross B. Corotis
The American Concrete Institute, Standard 318, Building Code Requirements for Reinforced Concrete have permitted the design of reinforced concrete structures in accordance with limit state principles using load and resistance factors since 1963. A probabilistic assessment of these factors and implied safety levels is made, along with consideration of alternate factor values and formats. A discussion of issues related to construction safety and safety of existing structures is included.
10.14359/3138
SP133-03
M. Z. Cohn an Z. Lounis
An approach that integrates serviceability control with the ultimate limit state (ULS) design is presented. Each serviceability limit (SLS) is related to an amount of moment redistribution that corresponds to the permissible values of the crack widths, deflections, and stresses under service conditions. A design that simultaneously satisfies the specified ULS and SLS criteria may be obtained if the assigned moment redistribution percentages y do not exceed the recommended redistribution limits for serviceability control. The proposed approach integrates all relevant design criteria via the moment redistribution percentage y, and may be used within the framework of ACI 318-89 or other standard codes. The approach allows a direct extension to existing nonlinear, multicriteria, and optimal design methods.
10.14359/3143
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer