International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 17 Abstracts search results

Document: 

SP133-14

Date: 

September 1, 1992

Author(s):

W. B. Cranst

Publication:

Symposium Papers

Volume:

133

Abstract:

The introduction of limit state design into the UK code for structural concrete in the 1960s is reviewed. The objections and controversies aroused are described. A selection of probability studies carried out in the interim is discussed and a possible way forward is outlined.

DOI:

10.14359/3168


Document: 

SP133-15

Date: 

September 1, 1992

Author(s):

H. Omar and g. Morris

Publication:

Symposium Papers

Volume:

133

Abstract:

The behavior of laterally loaded flat-plate structures is strongly influenced by the nonlinear deformations at the plate-to-column connections. In this paper, a simple procedure is described for predicting the nonlinear moment-rotation behavior of flat-plate-to-column connections. That behavior is expressed by standardized moment-rotation functions. These functions were derived using a modified Rambert-Osgood function and all available experimental data. The influence of the most significant connection parameters such as the steel ratio, concrete strength, gravity loading, etc., on the connection behavior is incorporated into the functions. A physical model of the column region is described which facilitates the incorporation of the functions into a structural analysis computer program. The accuracy of the functions has been demonstrated for several plate-column connections. The computer analysis program is also described and an example is considered to compare results obtained from the program with those published in the literature.

DOI:

10.14359/3174


Document: 

SP133

Date: 

September 1, 1992

Author(s):

Editors: Edward G. Nawy and Andrew Scanlon

Publication:

Symposium Papers

Volume:

133

Abstract:

SP-133 Design for serviceability and safety is central to the work of structural engineers, code-writing bodies and the users. The current era of high strength materials, exotic additives and limit states of design has necessitated better control of constructed facilities in their short and long-term behavior at service load and at ultimate load. This Special Publication concentrates on topics that give the design engineer and contractor an insight into how to avoid practices that could affect the integrity or long-term performance of structural elements and systems. The text is outgrowth of a national symposium of the American Concrete Institute co-sponsored by ACI Committees 348 and 435, and covers topics ranging from crack-control in reinforced and prestressed concrete, safety provisions in design codes and practical deflection computations to limit state design principles and seismic performance of frame structures. Several papers that could not be presented due to time limitations are included. The papers dealing with serviceability, highlight requirements of the ACI Codes and Reports in addition to relevant state of the art developments. The paper covering safety deal with issues ranging from philosophical discussions of treatment of safety in codes to project case studies. Overlap is expected since serviceability and safety are indivisible. All the papers presented in this publication were reviewed by recognized xperts in accordance with the ACI review procedures. It is hoped that designer, constructors and codifying bodies will be able to draw on the material presented in improving the safety and long-term cracking and deflection behavior of concrete constructed facilities.

DOI:

10.14359/14165


Document: 

SP133-11

Date: 

September 1, 1992

Author(s):

Alex Aswad

Publication:

Symposium Papers

Volume:

133

Abstract:

A procedure for rational prediction of deformation in pretensioned members is described. Full-scale load tests on stemmed members spanning 30 to 62 ft (9.2 to 18.9 m) were conducted by the author. They showed good correlation with the proposed predictions. Actual deflections were generally less or close to the computed values. It is suggested that the method may be used for loads not exceeding a certain ratio of the ultimate loads.

DOI:

10.14359/2888


Document: 

SP133-13

Date: 

September 1, 1992

Author(s):

C. C. Fu , J. Colville, and D. R. Schelling

Publication:

Symposium Papers

Volume:

133

Abstract:

Purpose is to present a lesson learned from the findings of the Governor Thomas Johnson Memorial Bridge, Maryland. The bridge has an overall length of 7205 ft, with 59 spans. Thirty-eight piers are made of concrete hammerhead-type pier caps with different height and cap sizes. The cracks observed on the deep water piers initiated the evaluation of these hammerhead-type pier caps. The structural integrity was questioned and several analysis procedures were taken on this case. Extensive computer analyses, including nonlinear finite element analyses were conducted. This paper also intends to depict the implementation of the Code, design methodology, and calculation procedures concerning this type of pier for engineering practices. Finally, the remedial strengthening method using the post-tensioning system is presented.

DOI:

10.14359/2894


1234

Results Per Page 




Edit Module Settings to define Page Content Reviewer