ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 56 Abstracts search results
Document:
SP138-04
Date:
September 1, 1993
Author(s):
M. Mashima and K. Iwamoto
Publication:
Symposium Papers
Volume:
138
Abstract:
Recently, a non-metallic reinforcement is developed using new synthetic fiber, such as carbon, aramid and vinylon fiber in Japan. The fiber is made into a FRP rod. This material has advanced properties, for example, corrosion free, light weight and high strength, and are expected to apply for the practical structures. However, it is important to study engineering properties and design method in many fields theoretically and experimentally. In present paper, the bond characteristics are discussed because the expansion coefficient of non metallic fiber is different from conventional concrete. The results from the pull-out tests are, (l)the bond strength of FRP rod is ensured for the concrete structures, and (2)the deterioration of bond property is not appeared in CFRP, GFRP and VFRP however a little reduction is observed at AFRP rod.
DOI:
10.14359/10034
SP138-13
A. Nanni, M.S. Norris, and N.M. Bradford
Lateral confinement of concrete members by means of spirally wrapping fiber-reinforced-plastic (FRP) composites onto the concrete surface may increase compressive strength and ultimate strain (pseudo-ductility). It may also provide a mechanism for shear resistance, and inhibit longitudinal steel reinforcement buckling. Lateral confinement of concrete members as a strengthening/repair technology is expected to have an impact in the rehabilitation/renovation of buildings and infrastructure. Structures that have been damaged, or need to comply with new code requirements, or are subjected to more severe usage are the primary targets. In this project, an experimental and analytical study of concrete strengthened with FRP lateral confinement I conducted using compression cylinders (300 and 600 mm in length) and l/4 scale column-type specimens. The latter specimens have a circular cross section and given longitudinal/transverse steel reinforcement characteristics. Column-type specimens are subjected to cyclic flexure with and without axial compression. When an aramid FRP tape is used as the lateral reinforcement, the variables are tape area and spiral pitch. In the case of filament winding with glass fiber, the thickness of the FRP shell is varied. The limited experimental results obtained at this stage of the research program indicate that lateral confinement significantly increases compressive strength and pseudoductility under uniaxial compression.
10.14359/10035
SP138-02
Rajan Sen, Daniel Mariscal, and Mohsen Shahawy
A comprehensive durability study of S-2 glass-epoxy pretensioned beams exposed to wet-dry cycles in 15 percent salt solution indicated a complete loss of effectiveness within 3 to 9 months of exposure. Paper presents results of subsequent follow-up investigations to identify the cause of this deterioration and also to examine practical measures that could be used to prevent its occurrence. The analysis of the test results suggests that the most likely cause of failure was diffusion of hydroxyl ions from the concrete pore solution through the resin. This is supported by SEM micrographs of the failed beam. While these conclusions are valid only for the S-2 resin, diffusion is also likely to be a characteristic of other types of resins, e.g., vinylesters and polyesters. This makes long-term protection of glass fibers in concrete problematic.
10.14359/3857
SP138-03
K. Mukae, S. Kumagai, H. Nakai, and H. Asai
Bond characteristics of FRP rod and concrete after freezing and thawing deterioration
10.14359/3858
SP138-07
Taketo Uomoto and Hosam Hosam Hodsam
The mechanical behavior and tensile strength of three kinds of FRP rods were investigated experimentally. For each material, three different fiber volume fractions were tested in axial tension. The stress-strain relationships and strength distributions were obtained. The results were correlated to the behavior and strength of the basic strengthening elements, fibers, as determined experimentally. This yielded the possibility of predicting rod modulus, but not strength, from those fibers. The strength distributions showed a shift that is not generally proportional to rod fiber content. Investigation of this phenomenon, through stress analysis at the grips and inspection of failed rods, assured the change of rod failure modes for different fiber contents. The effect of grips could lead to one of two shear failure modes instead of tension mode. Therefore, an apparent strength reduction was observed. In view of rod properties, appropriate design of the gripping system is needed to obtain the best performance of the rods.
10.14359/3859
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer