ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 46 Abstracts search results
Document:
SP149-30
Date:
October 1, 1994
Author(s):
I.K. Fang and J.Y. Wu
Publication:
Symposium Papers
Volume:
149
Abstract:
An experimental investigation was conducted on the shear behavior of deep beams made with steel fiber reinforced high performance concrete (HPC). Twenty-six beam specimens with various shear span-effective depth ratios, steel fiber contents, amounts of vertical and horizontal web reinforcements were tested under static loads. In addition to the strength test, extensive instrumentations were designed for the measurements of average strains of reinforced concrete in the shear span and strains of web reinforcements. The web-shear cracking initiated as the first inclined shear crack. About 30% increase in the inclined shear strength and 25% increase in the ultimate shear strength can be achieved with addition of 1 .O% steel fiber for specimens having a/d= 1 .5. The strain of vertical web reinforcements became negative and the horizontal web reinforcements were stretched to yield state for specimens having a/d ratios approach 0.5. The measured load-deformation relationships of reinforced concrete and strains of web reinforcements were compared with the prediction of the softened truss model of steel fiber reinforced concrete proposed by other investigators. Good correlation was found from the comparisons.
DOI:
10.14359/10050
SP149
Editor: V.M. Malhotra
SP-149 The theme of this second ACI International Conference was high-performance concrete. The conference proceedings title "High-Performance Concrete" contains 45 papers presented at this program. Whether you are currently involved with or are considering the use of high-performance concrete, this special symposium document is a must for you. Use the valuable information found in the above titles as well as the other listed in this special document.
10.14359/14189
SP149-02
S. Nagataki, N. Otsuki, and M. Hisoda
Recently, there has been a great demand for high-quality concrete and concrete structures with high performance. In this context, silica fume is one of the most remarkable mineral admixtures that can give concrete high performance, such as high workability, strength, and durability. However, it is unclear as to the types of form silica fume takes in concrete, mortar, and cement paste. Some researchers point out that silica fume may be in high agglomeration. Therefore, it is very important to disperse silica fume in concrete effectively to get high-performance concrete. Consequently, this paper deals with the effect of physical treatment (ultrasonic homogenizer) and chemical treatment (superplasticizer) of silica fume on the properties of mortar. In this study, different silica fumes were used, one Japanese and five imported. The investigated properties of mortar were workability (flow values), compressive strength, and total pore volume. The study resulted in the following conclusions: 1) Silica fumes in the Japanese market were highly agglomerated in the natural state. This agglomeration of silica fume can be broken up by using some treatment methods, such as ultrasonic homogenizer and superplasticizer. 2) Physical treatment (ultrasonic homogenizer) before mixing mortar was useful to improve compressive strength and to decrease total pore volume of mortar containing silica fume. The use of superplasticizer could result in highly workable mortar. 3) The effectiveness of ultrasonic homogenizer treatment and that of superplasticizer treatment are different.
10.14359/4062
SP149-04
A. K. Haug
The latest developments in concrete platform concepts for deep water and floating structures have indicated the need for further development in the field of practical concrete technology. Paper presents some of the most significant factors in this challenge such as increased compressive strength, improved workability, and stability of fresh concrete, use of high-strength lightweight aggregate concrete, measures to improve the concrete E-modulus, and utilization of variable concrete density to optimize the platform design. This has been achieved through further development of the constituent materials, refinements of the mix design, and advancements in production methods, as well as the use of high-quality lightweight aggregates.
10.14359/4065
SP149-05
M. Sandvik, T. Hovda, and S. Smeplass
The troll GBS platform is the world's largest concrete offshore concrete platform. The platform is designed for an operational lifetime of 70 years and will be installed in the North Sea during 1995. To improve the buoyancy of the platform during tow-out to the field, a concrete mixture with reduced density has been developed, providing a characteristic 28-day cube compressive strength of at least 75 MPa and an in situ density of 2250 kg/m 3. The weight reduction has been obtained by partly replacing the natural coarse aggregates by high-quality lightweight aggregates. The concrete is denoted as modified normal density (MND) concrete. The modification was expected to reduce both compressive strength, Young's E-modulus, and material ductility to some extent. A comprehensive testing program comprising laboratory tests and full-scale tests has been performed to investigate and to document all relevant concrete properties related to mechanical, durability, and constructibility performance of the concrete. A secondary purpose of the investigations has been to evaluate the possibility of retaining the mechanical properties of the original normal density concrete by replacing the remaining coarse granite aggregate with a more rigid quartz-diorite aggregate. The laboratory investigations included the determination of the following concrete properties: fresh concrete properties, compressive strength development, compressive strength at sustained load, compressive E-modulus, tensile strength and E-modulus, stress-strain in compression, fatigue, fracture energy and characteristic length, shrinkage, creep, water intrusion, and alkali-silica reactivity.
10.14359/4069
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer