Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 63 Abstracts search results
Document:
SP153-55
Date:
June 1, 1995
Author(s):
S. NagatakiI and C. Wu
Publication:
Symposium Papers
Volume:
153
Abstract:
The workability, strength, and durability of concrete are affected by particle distribution and chemical composition of cement. So, a cement which has ideal particle distribution and chemical composition is needed is needed for making high performance concrete. This kind of cement can be realized by blending portland cement, silica fume, and blast furnace slag, because they have different particle distributions and chemical compositions. In this paper, the triple blended cement was composed of 10 percent silica fume, 30 percent blast furnace slag, and 60 percent portland cement as it had suitable chemical composition and the densest particle distribution in portland cement or portland cement admixed by silica fume or blast furnace slag in this research. The hydration process of the triple blended cement was similar to the portland cement, but the heat of hydration and Ca(OH) 2 content in the hydrates were much lower than that for portland cement. It was found that the porosity of the hardened paste was so low that it was half of that in portland cement paste. The R 2O in its pore solution was only 88 percent of that in pore solution of portland cement paste. This fact means the triple blended cement may reduce the alkali-silica reaction of concrete. The flows of the fresh mortars made by the triple blended cement were higher or lower than the flow of the control mortar depending on the specific surface area of silica fume used. The compressive strengths of the mortar were higher than that of the control mortar as its denser paste. Because of the low Ca(OH) 2 content in the hydrates and R 2O in the pore solution, the resistance of the mortars to sulfate attack and alkali-silica reaction was high. However, the drying shrinkage of the mortars made with the triple blended cement was higher than that of the control mortar.
DOI:
10.14359/1047
SP153-53
D. D. Higgins and M. D. Connel
In a program covering a wide range of mixtures, three portland cements and two ground granulated blast furnace slags (GGBS) were used to investigate the relationship between alkali content and ASR expansion. Length changes were monitored, for several years, on concrete prisms made with a reactive natural aggregate. The prisms were moist cured at 20 C and 38 C. Storage at 38 C was found to be an accelerated test which correlated will with storage at 20 C. At 20 C, the rate of expansion was some four times slower than at 38 C. Nonetheless, there was very good consistency between the two temperatures in classifying mixtures either expanding or nonexpanding. Current indications are that the magnitudes of ultimate expansions are independent of temperature. The mixtures containing GGBS tolerated much greater alkali contents in the concrete without expansion. This effect was more pronounced for higher proportions of GGBS. The results of the program are discussed in this paper in relation to various rules which have been proposed to take advantage of the effectiveness of GGBS in preventing ASR.
10.14359/1046
SP153-52
M. Iwai, A. Takagi, T. Mizobuchi, and Y. Nobuta
When using high-strength concrete in large structures, it is important to minimize generation of thermal stresses during hydration of cement and to minimize variation of concrete properties. The proper workability is also very important. A research program is underway with the above aspects in mind to optimize the requirements of high strength, low heat generation, and pumpability, using both the newly developed low heat cement (LSC) with high content of finely ground blast furnace slag and the high-range, water-reducing admixture. This paper describes the test results on fundamental properties, pumpability, and thermal stress reduction effects on high-strength concrete of 60 MPa, using this type of low heat cement. The following results were obtained. 1. The heat generation of LSC is remarkably lower than conventional low heat cement (blended cement: FMKC). When using LSC, the thermal stress was reduced by 60 percent compared to concrete using normal portland cement. 2. The quality of concrete manufactured in the concrete plant was comparatively uniform. 3.Pressure loss during pumping was three to four times larger than ordinary concrete. However, it was verified that after pumping, the quality of concrete using LSC showed satisfactory workability and had less variation compared to the quality of concrete using FMKC. 4. From results mentioned above, by selecting proper high-range, water-reducing admixture, the use of LSC is considered to be a solution for reducing cracks due to hydration in high-strength concrete while maintaining suitable workability and sufficient strength development.
10.14359/1045
SP153-51
J. P. H. Frearson and D. D. Higgins
Various accelerated test methods have been proposed for the assessment of sulfate resistance of cements. A majority of these methods measure the expansion of mortar prisms in sulfate solution. Differences in test procedure can have a significant effect on the expansion observed and may possible affect the ranking of cement types. The different performance in sulfate solutions of cements containing different slag percentages and water- cement ratios and the lesser influence of different slag alumina contents have been reported previously. This paper summarizes data from various test works which demonstrate the effect on expansion of variations in the following test parameters: aggregate- cement ratio (at constant water-cement ratio), specimen shape, initial curing period, specimen compaction, initial curing deficiencies, early carbonation, concentration of sulfate solution, and type of sulfate solution. The first three of these parameters had comparatively little influence on expansion; the remainder had more significant influences on expansion. Sieving mortar for test specimens from production concrete provided a useful and comparable method of assessment. The test programs were principally concerned with slag cement blends, but as any test method had to be applicable to all types of cement, a number of sulfate-resisting portland cements were tested. The wide range of expansion characteristics suggest that a "typical" control SRPC may not be easily defined.
10.14359/1044
SP153-54
Ohama, J. MadejJ, and K. Demura
The efficiency of finely ground blast furnace slags (BFS) was studied in relation to the fundamental physico-mechanical and structural properties of cement mortars. A positive effect of BFS fineness on the workability of fresh mortars was proved. Due to a small water content (20 percent by mass of the cementitious material) when combined with a high-range, water-reducing admixture (HRWRA), the compressive strengths of mortars ranging between 80 and 100 MPa are ascertained at normal curing conditions. Special curing conditions, such as autoclaving or hot water curing, produce specimens with compressive strengths in the range of 100 to 130 MPa, depending on the grading of BFS and the composition of the binder. With additional heat curing, the compressive strength of the mortars increase, in general, by about 10 to 50 percent over that of either autoclaved or hot water cured mortars. In this paper, some other properties of high-strength mortars incorporating finely ground BFS are discussed, including porosity and durability investigations. The efficiency of BFS addition is compared with other fine mineral powders, such as silica fume and fine silica powder, with special attention paid to binder compositions and curing conditions.
10.14359/1029
Results Per Page 5 10 15 20 25 50 100