International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 63 Abstracts search results

Document: 

SP193-31

Date: 

August 1, 2000

Author(s):

M. Imam and L. Vandewalle

Publication:

Symposium Papers

Volume:

193

Abstract:

The paper investigates the shear strength and the failure modes of high strength concrete beams with and without steel fibers ( fC = 110 MPa). Sixteen reinforced high strength concrete beams (3600x350~200 mm) were tested under different combinations of shear force and bending moment. The beams were singly reinforced and without shear (web) reinforcement. The test results indicated that the addition of steel fibers to high strength concrete increases the ultimate shear strength, improves the brittle characteristic and transforms the failure mode into a more ductile one. The average gain of the ultimate shear strength due to the addition of steel fibers varied from about 14% to 14 1% depending on the shear span to depth ratio and the longitudinal steel ratio. Four modes of failure of reinforced high strength concrete are clearly distinguished as; diagonal tension, shear compression, shear flexure, and flexural failure. In general, cracks in fiber reinforced concrete beams are closer, narrower, and more than those in beams without fibers. This reflects the effect of steel fibers in redistributing the stresses beyond cracking.

DOI:

10.14359/5841


Document: 

SP193

Date: 

August 1, 2000

Author(s):

Editor: V.M. Malhotra

Publication:

Symposium Papers

Volume:

193

Abstract:

In September 2000, the American Concrete Institute sponsored the ACI Fourth International Conference in Seoul, Korea. Sixty-two papers are included in this publication. Note: The individual papers are also available as .pdf downloads.. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP193

DOI:

10.14359/14227


Document: 

SP193-50

Date: 

August 1, 2000

Author(s):

S.-G. Hong and D.-J. Kim

Publication:

Symposium Papers

Volume:

193

Abstract:

This study proposes a new design formula for the development of positive moment reinforcement in tension. A review of current design code provisions for the end anchorage at simply supported beams shows unsatisfactory requirement for flexural bond strength and that an additional length beyond simple supports is needed. The code provisions neglect a tensile force increase due to shear force and hence, the formulas assume zero tensile force at simple support locations. This paper shows that the treatment for both the flexural bond strength and anchorage requirements is necessary for the safe detailing of reinforcement at beam end regions. Investigation of bond-related failures in these regions shows that it is necessary to differentiate between the anchorage force and flexural bond strength along the bar. Comparison between bond strengths required by current design concept and the proposed formula shows a need for modification of current code provisions for end anchorage.

DOI:

10.14359/9963


Document: 

SP193-51

Date: 

August 1, 2000

Author(s):

B. S. Hamad

Publication:

Symposium Papers

Volume:

193

Abstract:

Production of high performance concrete (HPC) depends on several factors including the use of low water-to-cementitious material ratio, proper dosage of high-range water-reducer (superplasticizer), and a careful selection and dosage of a mineral pozzolanic admixture such as silica fume. Most of the improvement in the strength and durability characteristics of the hardened concrete is attributed to the filler effect and pozzolanic action of the fine size silica fume. Results of tests conducted at the American University of Beirut (AUB) on tension lap splices in full-scale beam specimens and on reinforcing bars anchored in eccentric pullout specimens, indicate that the replacement of part of the cement by an equal weight of silica fume resulted in reduction in bond strength. The reduction was independent of specimen type, bar size, super-plasticizer dosage, and casting position. The mode of failure of the high strength concrete beam specimens was a very brittle bond splitting failure. Tests were conducted to check the effect of transverse reinforcement in the splice region on the bond strength and mode of failure. This paper will provide an overview of the research performed at AUB.

DOI:

10.14359/9964


Document: 

SP193-52

Date: 

August 1, 2000

Author(s):

P. Stroeven, D. H. Dalhuisen, and A. T. Moczko

Publication:

Symposium Papers

Volume:

193

Abstract:

Inhomogeneous stress situations are prevailing in some engineering problems, such as around corroding steel bars or around aggregate particles expanding due to alkali-silica reaction. Micro-mechanics and macromechanics will significantly differ in those cases. The present article focuses on experiments simulating the effect of steel bar corrosion on four cementitious composites. For that purpose, prismatic specimens containing an excentrically located slightly tapered cylindrical hole, where subjected to controlled push-through of a metal cone of similar shape. Behaviour in the pre-peak range was reflected by strain gauges, and in the post-peak region by clip gauges. Simulateneously, acoustic emission measurements were performed. Various aspects of the tests have been highlighted before in publication to which is referred when relevant. This paper merely presents illustrative data, evidencing typical micro- and macro-mechanical processes taking place under the given conditions. Successively, on macro-level, the elastic range terminates at Discontinuity Point (DP), at ultimate (BOP) a stage of quasi-plastic yielding is obtained, and a mechanism is formed at Crack Opening Point (COP), after which energy due to bar expansion is stored in opening up of only the leading crack. On micro-level, dispersed crack initiation and coalescence in radial direction starts at the interface. this process gradually concentrates in one of the two ‘weakest’ sections of the covercrete. This process slows down, whereupon cracks are initiated at the exterior of the second weakest section. Here they propagate to coalesce with the interor microcracks to form the major crack.

DOI:

10.14359/9965


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer