ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 63 Abstracts search results
Document:
SP193-62
Date:
August 1, 2000
Author(s):
H. A. Toutanji
Publication:
Symposium Papers
Volume:
193
Abstract:
Fiber reinforced polymer composite (FRPC) wraps are increasingly being used for rehabilitation and strengthening of concrete structures This paper presents the results of an experimental study on the tensile performance of cement-based specimens wrapped with FRPC sheets subjected to wet-dry and freeze-thaw cycles. The tensile strength values were evaluated using the ASCERA hydraulic tensile tester. This simple testing technique provides a uniform stress distribution throughout the specimen, thus minimizing eccentricity and gripping effects, which can be of a significant source of error. Cement-based specimens were wrapped with three different types of FRP tow sheets: two carbon and one glass. Test variables included the type of fiber (Cl, C5, and GE) and the environmental exposure conditions. The specimens were conditioned in three different environments, as follows: a) room temperature (23C), b) 300 wet-dry cycles using salt water and c) 300 freeze/thaw cycles. At the end of each exposure, ultimate strength and load-extension behavior were obtained and then compared to the performance of unconditioned samples. Results show that specimens wrapped with carbon fiber reinforced polymer (CFRP) experienced no reduction in strength due to exposure, whereas specimens with glass fiber reinforced polymer (GFRP) experienced a significant reduction in strength. Fractography was used to identify the failure initiating flaw and failure mode for the fractured tensile specimens.
DOI:
10.14359/9975
SP193-48
S. H. Cho and L. H. lee
To deepen the understanding of shear behaviour in beams without transverse reinforcement, the relative importance of two major contributing elements to concrete shear resistance(V), such as the friction at crack faces and the residual tensile stresses between cracks, was explained by comparing two analytical methods based on the truss model concept. One is called the Modified Compression Field Theory(MCFT) " considering the two elements explicitly, and the other the Crack Friction Truss Model(CFTM) more dominantly the former element in determining the concrete shear resistance. To evaluate their validity in considering such complex behaviour, the predictions were also made for twenty KAIST beam tests, designed more likely to the development of the size effect law based on the fracture mechanics concept. Experimental findings with varying of shear span-to-depth and longitudinal reinforcement (pt) ratios, and beam depths were well captured by the two methods, and the complete analysis results obtained from the MCFT enabled additional explanations that were difficult to measure in tests. In addition, the simplified Vc+ Vs approach, but including the empirical factor to reflect the size effect, predicted test results with reasonable accuracy.
10.14359/9961
SP193-49
S.-W. Han, Y.-M. Lee, C.-H. Oh, and L.-H. lee
objective of this study is to investigate the seismic performance of repaired structural walls. The structural walls under consideration have specific details that have been widely used in Korea. In this study three isolated large-scale wall specimens were made. After testing, all specimens were repaired. The aspect ratio under consideration is 1 to 3. Because of the space limitation of the laboratory the dimensions of all walls are the same. The aspect ratio was controlled by the combination of axial and lateral forces using the special test setting. The walls were tested using the incremental pseudo static cyclic loads until failure occurs. After that, only the damaged regions are repaired using a concrete with the same properties of the original concrete. The sectional area was unchanged after repairing. The severely yielded reinforcements were replaced by new reinforcement having the same sectional area and properties. Also, epoxy resins were used to fill the cracks in the damaged walls. From this study the capacities of repaired structural walls with specific details after severely damaged is evaluated and compared with those of the corresponding original specimens.
10.14359/9962
SP193-50
S.-G. Hong and D.-J. Kim
This study proposes a new design formula for the development of positive moment reinforcement in tension. A review of current design code provisions for the end anchorage at simply supported beams shows unsatisfactory requirement for flexural bond strength and that an additional length beyond simple supports is needed. The code provisions neglect a tensile force increase due to shear force and hence, the formulas assume zero tensile force at simple support locations. This paper shows that the treatment for both the flexural bond strength and anchorage requirements is necessary for the safe detailing of reinforcement at beam end regions. Investigation of bond-related failures in these regions shows that it is necessary to differentiate between the anchorage force and flexural bond strength along the bar. Comparison between bond strengths required by current design concept and the proposed formula shows a need for modification of current code provisions for end anchorage.
10.14359/9963
SP193-51
B. S. Hamad
Production of high performance concrete (HPC) depends on several factors including the use of low water-to-cementitious material ratio, proper dosage of high-range water-reducer (superplasticizer), and a careful selection and dosage of a mineral pozzolanic admixture such as silica fume. Most of the improvement in the strength and durability characteristics of the hardened concrete is attributed to the filler effect and pozzolanic action of the fine size silica fume. Results of tests conducted at the American University of Beirut (AUB) on tension lap splices in full-scale beam specimens and on reinforcing bars anchored in eccentric pullout specimens, indicate that the replacement of part of the cement by an equal weight of silica fume resulted in reduction in bond strength. The reduction was independent of specimen type, bar size, super-plasticizer dosage, and casting position. The mode of failure of the high strength concrete beam specimens was a very brittle bond splitting failure. Tests were conducted to check the effect of transverse reinforcement in the splice region on the bond strength and mode of failure. This paper will provide an overview of the research performed at AUB.
10.14359/9964
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer