ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 9 Abstracts search results

Document: 

SP226-01

Date: 

March 1, 2005

Author(s):

F. H. Fouad and J. Dembowski

Publication:

Symposium Papers

Volume:

226

Abstract:

Autoclaved aerated concrete (AAC) is a lightweight uniform cellular material, first developed in Sweden in 1929. Since that time, AAC building components have been widely used in Europe and other parts of the world. Until recently, however, AAC was relatively unknown to the United States precast construction market. Today, AAC is gaining rapid acceptance in the United States due primarily to increasing energy cost and environmental concerns. Although AAC is a well-recognized building material in Europe, very little research work has been done on American-produced AAC components. The goal of the testing program was to further develop the database of the material properties and structural behavior of American-made AAC by testing plain AAC elements from three different manufacturers. Manufacturers and designers will be provided with information that will help to promote AAC as a reliable engineered construction material in the U.S. Tests performed on the plain AAC consisted of compressive strength, flexural tensile strength, shear strength, and modulus of elasticity.

DOI:

10.14359/14388


Document: 

SP226-03

Date: 

March 1, 2005

Author(s):

F. H. Fouad and J. Dembowski

Publication:

Symposium Papers

Volume:

226

Abstract:

Autoclaved aerated concrete (AAC) is a lightweight uniform cellular material, first developed in Sweden in 1929. Since that time, plain and reinforced AAC building components have been widely used in Europe and other parts of the world. Until recently, however, AAC was relatively unknown to the United States precast construction market. Today, AAC prefabricated elements are gaining rapid acceptance in the United States due primarily to increasing energy cost, environmental concerns, and the ease of construction using AAC elements. Although AAC is a well-recognized building material in Europe, very little research work has been done on U.S.-produced AAC products. The primary objective of this work was to study the structural behavior of U.S.-made reinforced AAC elements. The laboratory test program included most commonly used reinforced AAC elements: floor panels, lintels, and wall panels. Two U.S. manufacturers supplied the AAC elements. Floor panels and lintels were tested in bending, whereas the wall panels were tested under axial or eccentric loading. The ultimate load capacity, cracking, deflection, and failure mode were observed and recorded for each test. The results provide a database that will be used to refine the analytical methods for the structural design of reinforced AAC elements. This information is needed to enhance AAC design methodologies and lay the foundation for establishing AAC as a reliable engineered construction material in the U.S.

DOI:

10.14359/14390


Document: 

SP226-02

Date: 

March 1, 2005

Author(s):

R. E. Barnett, J. E. Tanner, R. E. Klingner and F. H. Fouad

Publication:

Symposium Papers

Volume:

226

Abstract:

This paper is a summary of ACI 523.5R, which is a guide for using autoclaved aerated concrete panels. Its design provisions are non-mandatory, and are a synthesis of design recommendations from the Autoclaved Aerated Concrete Products Association, and from the results of research conducted at the University of Alabama at Birmingham (UAB), the University of Texas at Austin (UT Austin), and elsewhere. This paper discusses the design equations associated with the various typical structural uses of autoclaved aerated concrete. Those uses include flexural, axial compression, shear, bearing, bond and development of reinforcement and special seismic design provisions. The design provisions of this Guide are not intended for use with unreinforced, masonry-type AAC units. Design of those units is covered by provisions currently under development within the Masonry Standards Joint Committee.

DOI:

10.14359/14389


Document: 

SP226-04

Date: 

March 1, 2005

Author(s):

R. E. Klingner, J. E. Tanner, J. L. Varela, M. Brightman, J. Argudo, and U. Cancino

Publication:

Symposium Papers

Volume:

226

Abstract:

This paper summarizes the initial phases of the technical justification for proposed design provisions for AAC structures in the US. It is divided into two parts. The first part gives general background information, and presents an overall design strategy. Autoclaved aerated concrete (AAC), a lightweight cementitious material originally developed in Europe more than 70 years ago and now widely used around the world, has recently been introduced into the US construction market. AAC elements can contain conventional reinforcement in grouted cores, either alone or with factory-installed reinforcement. To facilitate the use of AAC in the US market, an integrated seismic-qualification program has been carried out, involving general seismic design provisions, specific element design provisions, and material specifications. The second part describes the design and testing of a suite of 14 AAC shear wall specimens, with aspect ratios from 0.6 to 3, under in-plane reversed cyclic loads at the University of Texas at Austin. The results of these tests have been used to develop predictive models and reliable design equations for AAC shear walls, the primary lateral force-resisting element of AAC structural systems.

DOI:

10.14359/14391


Document: 

SP226-06

Date: 

March 1, 2005

Author(s):

K. Itzler, P.E. and A. Nelson

Publication:

Symposium Papers

Volume:

226

Abstract:

A general overview of the approach to the design of autoclaved aerated concrete (AAC) structural walls and floor/roof panels is presented. Variations in design approach from concrete and masonry, and design equations specific to AAC are discussed and provided. Design examples illustrate the proposed approach.

DOI:

10.14359/14393


12

Results Per Page