ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 19 Abstracts search results
Document:
SP227
Date:
March 1, 2005
Author(s):
Co-Editors: N.J. Gardner and Jason Weiss
Publication:
Symposium Papers
Volume:
227
Abstract:
SP227 Structural engineers are concerned with the consequences of shrinkage, creep and cracking on the serviceability and durability of their structures. Creep increases deflections, reduces prestress in prestressed concrete elements, and causes redistribution of internal force resultants in redundant structures. Shrinkage can cause warping of slabs on grade due to differential drying and increased deflections of non-symmetrically reinforced concrete elements. Materials scientists are concerned with understanding the basic phenomena and assessing new materials and the effects of admixtures on the mechanical behavior of concrete. Concrete is an age stiffening material that has little tensile strength, shrinks, and exhibits creep in sealed conditions and additional creep in drying environments. Predicting the amount of shrinkage and deflection that may occur is not easy and is especially complicated in concrete that contains supplementary materials, chemical admixtures, and lightweight aggregates. Supplementary cementing materials and waste products are being used in increasing volumes in response to environmental concerns. Admixtures have been developed to modify the behavior of fresh and hardened concrete. Self consolidating concrete is being used in more applications. A recent development is the marketing of shrinkage reducing admixtures. This volume contains papers presented during four sessions sponsored by ACI Committee 209, Creep and Shrinkage in Concrete, and ACI Committee 231, Properties of Concrete at Early Ages, held at the Spring 2005 Convention. The subjects addressed by the authors are diverse and cover many aspects of shrinkage and creep. Some papers pay special attention to the development, use, and evaluation of models to predict shrinkage, creep, and deflection, while other papers consider the behavior of early age concretes that are restrained from shrinking, resulting in the development of residual stress and cracking.
DOI:
10.14359/14364
SP227-18
M. A. Miltenberger, E. K. Attiogbe, and A. R. Stoddard
Temperature effects are the predominant cause for volume change in concrete pavements. This paper describes an experimental investigation of thermal volume change conducted to improve the understanding of joint movement in concrete pavement. Four slab strips containing embedded strain gauges and thermocouples were monitored in a controlled environment under four heating rates. Each strip was monitored for translation, rotation, and warping height. Key findings of the experiment include the internal strain distribution and non-linear thermal gradients produced by asymmetrical heating. The laboratory data are compared with long-term data from an instrumented parking lot pavement. Analysis of the data provides insight into the prediction of thermal movements and determination of thermal stress development in pavements.
10.14359/14440
SP227-15
M. Lopez, L. Kahn, K. Kurtis, and B. Buchberg
Creep and shrinkage data for two high strength lightweight aggregate concretes were collected over a two-year period. The concretes, with unit weight of 1922 kg/m3 (120 pcf), were developed using expanded slate as coarse aggregate. Strengths of 55.2 MPa (8,000-psi) and 69.0 MPa (10,000-psi) were obtained at 56 days. Creep specimens were loaded to 40 or 60 percent of the initial compressive strength at 16 or 24 hours after casting. Based on this preliminary study, AASHTO-LRFD creep estimates of high strength, lightweight aggregate concrete were within 20% accuracy for ages later than one month. ACI-209 estimated creep of the 55.2 MPa lightweight concrete and shrinkage of the 69.0 MPa concrete within 20% accuracy, but greatly underestimated shrinkage of the 55.2 MPa mix. When compared with normal weight, high strength concrete of similar strength and similar cement paste content from previous research, the 69.0 MPa lightweight mix experienced lower total strain after two years.
10.14359/14437
SP227-16
M. Pigeon, B. Bissonnette, J. Marchand, D. Boily, and L. Barcelo
This paper illustrates how stress relaxation can be used to obtain valuable information regarding the behavior of concrete at early ages. Five concrete mixtures were investigated using a so-called discretized restrained shrinkage (DRS) testing device, allowing the determination (from the time of casting) of the increase in load induced by autogenous shrinkage and the evaluation of the different strain components (free shrinkage, elastic strain, creep). Test results indicate that the stress due to early-age restrained autogenous shrinkage is quite variable, in good part due to the variation in the relaxation capacity of the mixtures. Both the relaxation ratio, defined as the stress generated divided by the theoretical stress, and the relative relaxation, defined as the absolute value of stress relaxation divided by the average applied stress, can be used to illustrate and analyze the variation of the relaxation phenomena as a function of the type of mixture tested.
10.14359/14438
SP227-17
M. D. D’Ambrosia and D. A. Lange
Creep and shrinkage of concrete were studied under constant load and restrained conditions during the first week after casting. Concrete behavior was characterized by a uniaxial test that measures shrinkage deformation and restrained shrinkage stress. The extent of stress relaxation by tensile creep was determined using superposition analysis. The experimental measurements were compared with current creep and shrinkage models to assess their validity for early age prediction. The ACI 209 equation for creep is currently not applicable to early age, but modifications are proposed that fit a database of early age behavior. The B3 model has been previously modified to accommodate early age creep, and this modification was employed in the current study. Test results for normal concrete with different w/c ratios are discussed.
10.14359/14439
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer