ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 73 Abstracts search results
Document:
SP275-24
Date:
March 1, 2011
Author(s):
A. Bilotta, F. Ceroni, M. Di Ludovico, E. Nigro, M. Pecce, and G. Manfredi
Publication:
Symposium Papers
Volume:
275
Abstract:
The paper deals with the results of an experimental program aimed at the investigation of the bonding behavior of different types of FRP materials for strengthening: externally bonded carbon (EBR) plates, and bars or strips externally applied according to the Near Surface Mounted (NSM) technique. The overall experimental program consists of 18 bond tests on concrete specimens strengthened with EBR carbon plates and of 24 bond tests on concrete specimens strengthened with NSM systems (carbon, basalt and glass bars and carbon strips). The performances of each reinforcement system are presented, discussed and compared in terms of debonding load, load - slip relationship, and strain distribution; the failure mode of each system is also analyzed. The results of the experimental program allow a comparison of the effectiveness of the various EBR and NSM strengthening systems tested and evidence of some differences in the bond behavior.
DOI:
10.14359/51682434
SP275-19
Tayyebeh Mohammadi, Baolin Wan, and Jian-Guo Dai
This paper presents a finite element (FE) modeling method for predicting the IC debonding failure when the FRP/concrete interface is subjected to coupled pull-out (shear) and push-off (dowel) actions. Damaged plasticity model was used to simulate the behavior of concrete close to FRP/concrete interface. A thin damage band exposed to mixed-mode loading condition was modeled separately along the FRP-concrete interface. Cohesive elements were used to model the FRP/concrete interface. A sensitivity analysis was performed to find the appropriate damaged band dimensions, bending stiffness of FRP, and tensile strength of concrete for the model. The numerical results were validated by the experimental data. It was found in this research that the thickness of damage band was not a key parameter when Mode I loading dominated the debonding failure, FRP flexural stiffness had significant effect on behaviors of the strengthened beams, and the concrete tensile strength itself cannot be used as the unique failure criterion for predicting debonding failure.
10.14359/51682429
SP275-20
M. Taher Khorramabadi and C.J. Burgoyne
Based on an analysis of the experimental results of a proposed bond test method, significant differences are shown to exist between the local FRP bond stress-slip relationships in the uncracked anchorage regions and in the regions between cracks. The proposed method simulates the bond behavior between the flexural cracks and anchorage regions of a flexurally FRP-strengthened RC beam. The boundary conditions, including the presence of cracks and steel, are shown to have significant effects on the local bond stress-slip models. The results showed that, at the same force, the bond stresses in the regions between cracks were lower than in regions outside the cracks, so the debonding formed in the anchorage regions. The local bond stress-slip models in the anchorage regions can be obtained from the conventional bond test methods but these do not mimic the conditions between the cracks.
10.14359/51682430
SP275-21
V. Narayanamurthy, J.F. Chen and J. Cairns
Adhesively bonded FRP plate on the tension face of RC beams and slabs increases their flexural strength. The behaviour of the strengthened structure depends on the robustness of the FRP-RC interface bond. Correct modelling of this interface bond behaviour is very important to understand and characterize the common intermediate crack-induced (IC) debonding failure. Existing literature based on simple pull-off test is inadequate to fully analyse this failure due to the differences in the mechanics of failure. This paper considers axial forces, transverse shear forces and bending moments in the adherends of the bonded joint and provides solutions for the different states of the interface experienced using a linearly softening bond-slip model. The inclusion of bending and shear deformations introduces difficulties in relating the applied loading and the interfacial deformation but they are overcome in this study through a section analysis with partial interaction and a closed-form solution is obtained.
10.14359/51682431
SP275-16
N. L. Carey and J. J. Myers
This research investigated the development and characterization of different discrete fiber-reinforced polyurea systems for infrastructure applications. The behavior of various systems consisting of several polyureas with different fiber configurations was evaluated. Polyurea coating systems were previously evaluated for blast mitigation and impact resistance, and showed to be adequate in containing debris scatter from blast and impact. The purpose of further testing was an effort to develop a polyurea system for multi-hazard and/or repair-retrofit applications. The addition of fiber to a polymer coating provides improved stiffness and strength to the composite system while the polyurea base material provides ductility. Coupon tensile testing was conducted to determine the material mechanical properties in this study. The two parameters that were varied throughout testing were fiber volume fraction and fiber length. E-Glass fiber was used during specimen fabrication. Several optimal composite configurations of polyurea and fiber resulted from this coupon testing.
10.14359/51682426
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer