Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 8 Abstracts search results
Document:
SP282
Date:
December 29, 2011
Author(s):
Editor: Charles A. Weiss, Jr.
Publication:
Symposium Papers
Volume:
282
Abstract:
SP-282 This CD-ROM contains seven papers that were presented at sessions sponsored by ACI Committee 522 at the ACI Fall 2009 Convention in New Orleans, LA. The aim of this SP is to present some of the latest research findings on pervious concrete and to provide state-of-the-art examples on the use of pervious concrete. The six papers in this SP present the latest research results from both experimental and numerical studies on various aspects of pervious concrete.
DOI:
10.14359/51683563
SP282-01
December 27, 2011
Heather Brown, John Tyner, Ryan Otter, Spring Gilson, Jessie Weatherly and Brent Pilon
Note: This document has been retracted by request of the authors and is no longer available.
10.14359/51683638
SP282-03
Jonathan Thomle and Liv Haselbach
The focus of this study is on the pH changes over time of water in contact with pervious concrete aged under varying ambient air restrictions. Elevated pH levels may be a concern if exfiltrated directly to sensitive waters. This study was conducted to aid designers by determining the rate of pH decline under various conditions. For this study laboratory prepared pervious concrete specimens exposed to three different levels of ambient air were periodically tested for pH using four different testing methods, infiltrating either deionized water or tap water through the specimens, or soaking the specimens in either deionized water or tap water. Obvious trends in pH decline were observed. Greater exposure to ambient air significantly increased the rate of pH decline. The tap water tests represented more typical stormwaters and had much lower pH readings than the deionized water tests. The samples were representative of typical in-place conditions in an arid environment with little buffering and yet the pH declined sufficiently in well under a year.
10.14359/51683640
SP282-02
Norbert Delatte
Portland Cement Pervious Concrete (PCPC) is a material of increasing interest for parking lots and other applications. PCPC typically consists of coarse aggregates, portland cement, water, and various admixtures. In this research, in-service PCPC pavements were inspected in the field, and cores were removed in order to investigate properties in the laboratory. Field evaluation methods included visual inspection, two surface drainage measurements, and indirect transmission ultrasonic pulse velocity (UPV). Laboratory testing methods included void ratio, unit weight, compressive strength, splitting tensile strength, hydraulic conductivity, and direct transmission UPV. Because it is compacted on the surface with screeds or rollers, PCPC generally has higher strength, lower void ratio, and lower hydraulic conductivity at the surface than at the bottom. Therefore, the properties of the tops and bottoms of core samples were compared. Generally, the PCPC installations evaluated under this research project have performed well in freeze-thaw environments with little maintenance required. No visual indicators of freeze-thaw damage were observed. With the exception of some installations where the pore structure was sealed during construction with wet mixtures or over compaction, nearly all sites showed fair to good infiltration capability based on drain time measurements.
10.14359/51683639
SP282-05
Omkar Deo, Milani S. Sumanasooriya, and Narayanan Neithalath
Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features. This study describes the development of different models to understand the material structure – property relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The performance features modeled as a function of the pore structure features are: (1) the unconfined compressive strength, (2) permeability, and (3) permeability reduction due to particle trapping in the pores (clogging). A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation for feature sensitivity evaluation. Permeability prediction is accomplished using the well-known Katz-Thompson equation that employs the pore structure features. An idealized 3-D geometry obtained from 2-D planar images of pervious concrete sections is used along with a probablistic particle capture model to predict the particle retention associated with clogging material addition and simulated runoff. These models are anticipated to be useful in designing pervious concrete systems of desired pore structure for requisite performance.
10.14359/51683642
Results Per Page 5 10 15 20 25 50 100