Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 19 Abstracts search results
Document:
SP315
Date:
September 11, 2017
Publication:
Symposium Papers
Volume:
315
Abstract:
Editors: Carlos E. Ospina, Denis Mitchell and Aurelio Muttoni fib Bulletin 81 reports the latest information available to researchers and practitioners on the analysis, design and experimental evidence of punching shear of structural concrete slabs. It follows previous efforts by the International Federation for Structural Concrete (fib) and its predecessor the Euro-International Committee for Concrete (CEB), through CEB Bulletin 168, Punching Shear in Reinforced Concrete (1985) and fib Bulletin 12, Punching of structural concrete slabs (2001), and an international symposium sponsored by the punching shear subcommittee of ACI Committee 445 (Shear and Torsion) and held in Kansas City, Mo., USA, in 2005. This bulletin contains 18 papers that were presented in three sessions as part of an international symposium held in Philadelphia, Pa., USA, on October 25, 2016. The symposium was co-organized by the punching shear sub-committee of ACI 445 and by fib Working Party 2.2.3 (Punching and Shear in Slabs) with the objectives of not only disseminating information on this important design subject but also promoting harmonization among the various design theories and treatment of key aspects of punching shear design. The papers are organized in the same order they were presented in the symposium. The symposium honored Professor Emeritus Neil M. Hawkins (University of Illinois at Urbana-Champaign, USA), whose contributions through the years in the field of punching shear of structural concrete slabs have been paramount. The papers cover key aspects related to punching shear of structural concrete slabs under different loading conditions, the study of size effect on punching capacity of slabs, the effect of slab reinforcement ratio on the response and failure mode of slabs, without and with shear reinforcement, and its implications for the design and formulation in codes of practice, an examination of different analytical tools to predict the punching shear response of slabs, the study of the post-punching response of concrete slabs, the evaluation of design provisions in modern codes based on recent experimental evidence and new punching shear theories, and an overview of the combined efforts undertaken jointly by ACI 445 and fib WP 2.2.3 to generate test result databanks for the evaluation and calibration of punching shear design recommendations in North American and international codes of practice. Sincere acknowledgments are extended to all authors, speakers, reviewers, as well as to fib and ACI staff for making the symposium a success and for their efforts to produce this long-awaited bulletin. Special thanks are due to Laura Vidale for preparing the bulletin for publication. Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-315
Editors: Carlos E. Ospina, Denis Mitchell and Aurelio Muttoni
fib Bulletin 81 reports the latest information available to researchers and practitioners on the analysis, design and experimental evidence of punching shear of structural concrete slabs. It follows previous efforts by the International Federation for Structural Concrete (fib) and its predecessor the Euro-International Committee for Concrete (CEB), through CEB Bulletin 168, Punching Shear in Reinforced Concrete (1985) and fib Bulletin 12, Punching of structural concrete slabs (2001), and an international symposium sponsored by the punching shear subcommittee of ACI Committee 445 (Shear and Torsion) and held in Kansas City, Mo., USA, in 2005.
This bulletin contains 18 papers that were presented in three sessions as part of an international symposium held in Philadelphia, Pa., USA, on October 25, 2016. The symposium was co-organized by the punching shear sub-committee of ACI 445 and by fib Working Party 2.2.3 (Punching and Shear in Slabs) with the objectives of not only disseminating information on this important design subject but also promoting harmonization among the various design theories and treatment of key aspects of punching shear design. The papers are organized in the same order they were presented in the symposium. The symposium honored Professor Emeritus Neil M. Hawkins (University of Illinois at Urbana-Champaign, USA), whose contributions through the years in the field of punching shear of structural concrete slabs have been paramount.
The papers cover key aspects related to punching shear of structural concrete slabs under different loading conditions, the study of size effect on punching capacity of slabs, the effect of slab reinforcement ratio on the response and failure mode of slabs, without and with shear reinforcement, and its implications for the design and formulation in codes of practice, an examination of different analytical tools to predict the punching shear response of slabs, the study of the post-punching response of concrete slabs, the evaluation of design provisions in modern codes based on recent experimental evidence and new punching shear theories, and an overview of the combined efforts undertaken jointly by ACI 445 and fib WP 2.2.3 to generate test result databanks for the evaluation and calibration of punching shear design recommendations in North American and international codes of practice. Sincere acknowledgments are extended to all authors, speakers, reviewers, as well as to fib and ACI staff for making the symposium a success and for their efforts to produce this long-awaited bulletin. Special thanks are due to Laura Vidale for preparing the bulletin for publication.
Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-315
SP-315_17
April 1, 2017
Author(s):
Rupert Walkner, Mathias Spiegl, Jürgen Feix
The assessment of existing flat slabs and bridges often shows insufficient punching shear resistance in the area of the support regions. The reasons for this are modified requirements of use or more restrictive design rules. There are many different methods to increase the punching shear resistance, but most of them are expensive and require access to the upper surface of the structure. Thus the construction work is only possible under restricted operation. In addition, difficult detail issues arise with regard to the rearrangement of the structure sealing. This paper deals with a new strengthening system using concrete screws, which are installed vertically into pre-drilled holes from the soffit of the slab. The results of two test series with a total of nine specimens are presented in this paper. It turns out that this strengthening method leads to a significant increase in the shear punching capacity and to a less brittle failure mode.
SP-315_18
Thai X. Dam, James K. Wight, Gustavo J. Parra-Montesinos, Alex DaCosta
Seventeen large-scale interior reinforced concrete slab-column connections were tested to study the effect of different shear stud layouts and the percentage of slab flexural reinforcement. They were divided into two series M (twelve specimens) and S (five specimens) based on their dimensions. Each specimen in Series M had a 6 ft by 6 ft (1830 mm by 1830 mm) and 8 in. (200 mm) thick slab and a 6 in. by 6 in. (150 mm by 150 mm) column cross-section, while each specimen in Series S had a 10 ft by 10 ft (3050 mm by 3050 mm) and 10 in. (250 mm) thick slab and a 12 in. by 12 in. (300 mm by 300 mm) column cross-section. The percentage of slab flexural tension reinforcement was approximately either 0.8% or 1.2%, and shear studs were arranged in either an orthogonal or radial layout. Test results showed that shear strength equations in the ACI Building Code (ACI 318, 2014) overestimated the strength of some test specimens. Also, specimens with a radial layout of shear studs typically had higher strength and more ductile behavior than specimens with an orthogonal stud layout. Recommendations to improve the design of flat plate systems are presented.
SP-315_15
Luis F. S. Soares, Robert L. Vollum
This paper examines the influence of flexural continuity on punching resistance at edge columns of braced flat slabs under gravity loading, making use of experimental data, nonlinear finite element analysis (NLFEA) and the Critical Shear Crack Theory (CSCT) as presented in the fib Model Code 2010 (MC2010). According to the CSCT, punching resistance reduces with increasing rotation y of the slab relative to its support area due to loss of aggregate interlock in the critical shear crack. NLFEA shows that as loads are increased to failure, moment redistribution from edge column supports to the span causes the loading eccentricity at edge columns to reduce below its initial elastic value. The resulting rotation y and peak shear stress are less than they are in comparable isolated test specimens with fixed loading eccentricity. Consequently, the CSCT predicts punching resistance at edge columns of flat slabs to be significantly influenced by flexural continuity, which is unaccounted for in the design methods of ACI 318 and EC2. Both NLFEA and the CSCT suggest that providing surplus flexural reinforcement in the span can be more effective at increasing punching resistance at edge columns than the common UK practice of providing surplus hogging flexural reinforcement.
SP-315_16
Dritan Topuzi, Maria Anna Polak, Sriram Narasimhan
The focus of this research is on developing new punching shear retrofit techniques for slab-column connections to improve the seismic response of flat-plate systems. Previous tests have shown the effectiveness of using shear reinforcement to enhance the shear strength and ductility of individual slab-column connections. However, the advantage of ductility in reducing the earthquake impact on structures is accompanied by an increase in the base shear, due to increased stiffness. Herein, a new type of punching shear retrofit element, shear bolts with flexible washers, is introduced. The flexible washers allow for shear crack opening during the lateral displacements, while at the same time providing control of the crack width by controlling the washer thickness and/or stiffness. The results show that this technique increases the ductility of the connections, without a commensurate increase in stiffness. The effect of this type of shear reinforcement on the response of an assembled structure is investigated through dynamic analysis, to check how energy dissipation within individual connections affects the overall energy dissipation of a flat-plate system. The presented system was designed for slab retrofit. However, it can be anticipated that similar concepts could be used in the construction of new slabs in seismic zones.
Results Per Page 5 10 15 20 25 50 100