ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 10 Abstracts search results

Document: 

SP333

Date: 

October 9, 2019

Author(s):

Yail J. Kim, John J. Myers, and Antonio Nanni

Publication:

Symposium Papers

Volume:

333

Abstract:

Concrete bridges play an important role in the efficiency and reliability of transportation civil infrastructure. Significant advancements have been made over the last decades to enhance the performance and durability of bridge elements at affordable costs. From an application perspective, novel analysis techniques and construction methods are particularly notable, which have led to the realization of more sustainable built-environments. As far as the evaluation and rehabilitation of constructed bridges are concerned, new nondestructive testing approaches provide accurate diagnosis and advanced composites, such as carbon fiber reinforced polymer (CFRP), have become an alternative to conventional materials. This Special Publication (SP) contains nine papers selected from two technical sessions held at The ACI Concrete Convention and Exposition – Spring 2018, in Salt Lake City, UT. The objective of the SP is to present technical contributions aimed to understand the state of the art of concrete bridges, identify and discuss challenges, and suggest effective solutions for both practitioners and government engineers. All manuscripts were reviewed in accordance with the ACI publication policy. The Editors wish to thank all contributing authors and reviewers for their rigorous efforts. The Editors also gratefully acknowledge Ms. Barbara Coleman at ACI for her knowledgeable guidance in the development of the SP.

DOI:

10.14359/51721378


Document: 

SP-333_07

Date: 

October 1, 2019

Author(s):

Martin Herbrand, Viviane Adam, Josef Hegger

Publication:

Symposium Papers

Volume:

333

Abstract:

Due to increased traffic loads and changes in the code provisions many highway bridges in Germany exhibit deficits in shear capacity according to current codes. The majority of these bridges’ structures comprises continuous concrete beams whose calculatory shear capacity is often exceeded by now. However, the actual shear capacity of prestressed concrete continuous beams is usually underestimated since the design procedures have been derived on the basis of single-span beam tests and neglect significant shear transfer mechanisms. In order to extend the service life of existing bridges, the reserves in the design procedures can be partially taken advantage of by the application of refined design approaches. For this reason, five shear tests on prestressed concrete continuous beams have been performed at the Institute of Structural Concrete of RWTH Aachen University in Germany. Within these tests, the influence of cross-section type (rectangular and I-shaped cross-section), load distribution (concentrated and distributed loads) and the shear reinforcement ratio are investigated. In this paper, the test results of three beams under concentrated loads will be presented.

DOI:

10.14359/51720273


Document: 

SP-333_08

Date: 

October 1, 2019

Author(s):

Needa Lingga, Yasir Saeed, Anas Yosefani, and Franz Rad

Publication:

Symposium Papers

Volume:

333

Abstract:

This research focused on concrete beams with voids simulating beams with fully corroded steel that were repaired with CFRP laminates. The experimental program included testing five, approximately one-third-scaled simply supported rectangular concrete beams. In three beams, the oiled steel rebars for flexure and shear were safely pulled out of the formwork after the concrete had cured for six hours, leaving voids. This technique was used to represent an extreme case of corrosion, albeit non-realistic, that is even worse than being exposed to the most corrosive environment. The aim was to investigate the extent of improvement by CFRP to flexural and shear capacity of beams that contain fully corroded steel bars, simulated by voids. The first specimen was with voids representing completely deteriorated steel. The second was a plain concrete beam without voids. The third beam was a typical code-designed reinforced concrete (RC) beam, that represented the “original undeteriorated” beam. The two remaining deteriorated beams were repaired by externally bonding one and two layers of CFRP. Load carrying capacity, deflection, and ductility were measured and compared. The novel results of this investigation were that test results showed that one layer of CFRP increased the load capacity to slightly higher than the RC beam, and two layers of CFRP increased it by a factor of two. Finally, a computer model was created to estimate the performance of the tested beams and to carry out a parametric study to investigate the effects of CFRP longitudinal reinforcement ratio and CFRP transverse confinement ratio on the flexural performance of CFRP-repaired concrete beams. The predicted contribution of CFRP to flexure and shear capacities was in good agreement with test results.

DOI:

10.14359/51720274


Document: 

SP-333_05

Date: 

October 1, 2019

Author(s):

Ruo-Yang Wu and Chris P. Pantelides

Publication:

Symposium Papers

Volume:

333

Abstract:

Two severely damaged concrete column-to-cap beam specimens were successfully repaired, using a carbon fiber-reinforced polymer (CFRP) cylindrical shell, non-shrink repair concrete, and headed steel bars. The first cast-in-place specimen experienced concrete crushing and longitudinal bars fracture/buckling; for the second precast specimen, the column was completely separated from the cap beam. In this paper, two analytical models, Model Fiber and Model Rotational Spring (RS), simulating the seismic performance of the repaired specimens are proposed. In Model Fiber, plasticity considering bond-slip effects was distributed over the defined plastic hinge length of the nonlinear beam-column element. In Model RS, a non-linear rotational spring was used to consider the concentrated plasticity located at the repaired cross-section. Low-cycle fatigue of the damaged column longitudinal steel bars was included in the analytical models. Simulations show that the analytical results, in terms of hysteretic response and moment-rotation, are in very good agreement with the experimental results. Model fiber performed better for predicting the pinching effect in the hysteretic response of the repaired cast-in-place specimen; Model RS performed better for matching the hysteresis curves of the repaired precast concrete specimen. In addition, Model Fiber was able to predict the local response of the columns including the fracture of longitudinal bars due to low-cycle fatigue.

DOI:

10.14359/51720271


Document: 

SP-333_03

Date: 

October 1, 2019

Author(s):

Bruno Dal Lago, Davide Bisi and Liberato Ferrara

Publication:

Symposium Papers

Volume:

333

Abstract:

Basalt-Fiber Reinforced Polymer (BFRP) bars have been recently proposed to be used to prestress precast concrete elements. Mechanical properties, potential low production cost, low carbon footprint, and enhanced durability make the application of BFRP to prestressed concrete promising. Nevertheless, some issues related to anchorage and sustained stress still need to be fully addressed. Applications are so far limited to few laboratory tests. This paper discusses how the Serviceability Limit State (SLS) and Ultimate Limit State (ULS) checks of prestressed elements employing this technology vary with respect to elements pre-stressed with steel tendons. Furthermore, an attempt is made to investigate the potential application into the precast concrete industry, by analyzing several typical roof and floor slab elements with different cross-sections. This investigation highlights which type of element could be more advantageously switched to the use of pre-stressed BFRP bars, and at which cost in terms of structural performance.

DOI:

10.14359/51720269


12

Results Per Page