ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 53 Abstracts search results
Document:
SP-360_34
Date:
March 1, 2024
Author(s):
Adi Obeidah and Hani Nassif
Publication:
Symposium Papers
Volume:
360
Abstract:
Developments in the prestressed concrete industry evolved to incorporate innovative design materials and strategies driven towards a more sustainable and durable infrastructure. With steel corrosion being the biggest durability issue for concrete bridges, FRP tendons have been gaining acceptance in modern prestressed technologies, as bonded or unbonded reinforcement, or as part of a “hybrid” system that combines unbonded CFRP tendons and bonded steel strands. Assessments of the efficacy of hybrid-steel beams, combining bonded and unbonded steel tendons. in the construction of segmental bridges and in retrofitting damaged members has been established by several researchers. However, limited research has been conducted on comparable hybrid prestressed beams combining CFRP and steel tendons (hybrid steel-cfrp beams). This paper provides an insight on the flexural behaviour of eighteen prestressed beams tested under third-point loading until failure with the emphasis on the tendon materials (i.e., CFRP and steel) and bonding condition (i.e., bonded, unbonded). In addition, a comprehensive finite element analysis of the beams’ overall behaviour following the trussed-beam methodology is conducted and compared with the experimental results. Results show that hybrid beams, utilizing CFRP as the unbonded element maintained comparable performance when compared to hybrid steel beams. The results presented in this paper aim to expand the use of hybrid tendons and facilitate their incorporation into standard design provisions and guidelines.
DOI:
10.14359/51740646
SP-360_35
Ramin Rameshni, PhD, P.Eng., Reza Sadjadi, PhD, P.Eng, Melanie Knowles, P.Eng., M.Eng.
Deterioration of concrete bridges has resulted in reduction of their service lives and increase in required maintenance which is associated with cost and inconvenience to the public. A prevalent cause of concrete bridge deterioration is corrosion which initiates by chloride ions penetration past the protecting layers and by corroding the steel reinforcement. Because corrosion in prestressed concrete members has more serious consequences than in non-prestressed reinforced concrete, it is important that bridge designers and inspectors be aware of the potential problems and environments that may cause the issue and address them as soon as they are detected. This paper discusses a case study of a highway bridge (Hyndman Bridge, Ontario) including its deterioration, causes, mitigation measures, structural evaluation and the selected repair method. The rehabilitation design is based on guidelines of the latest editions of the CHDBC and ACI 440.2R. CFRP strengthening techniques have been proposed to address the flexure and shear deficient capacity of deteriorated girders. It is concluded that by using a suitable repair methodology employing CFRP, it is possible to upgrade the bridge to comply with the latest requirements of the code and increase the service life of the structure which otherwise would have needed imminent replacement.
10.14359/51740647
SP-360_36
Alexandra Boloux, Luke Bisby, Valentin Ott, Giovanni P. Terrasi
Carbon Fibre Reinforced Polymers (CFRPs) are a material of choice in the aerospace and automotive industry, but despite decades of research into their application in structural engineering applications, and in particular in new-build construction of buildings and bridges, CFRP elements remain regarded as somewhat exotic in structural engineering and their widespread take-up is mostly limited to the non-prestressed strengthening of conventional structural members. The study presented in this paper assessed the performance of CFRP bridge tendons, prestressed for 18 years at 45% of their design ultimate tensile capacity in a non-conditioned outdoor environment, over water, in Lucerne, Switzerland. The performance of the tendons is considered alongside pristine samples of the same tendons never used and stored, unstressed, indoors since 1997. Thermal characterization (matrix digestion, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC)) was used to determine the fibre volume fraction and glass transition temperature, and tensile tests were performed and compared against available original baseline results from 1997. This comparisons show that the in-service tendons do not appear to have been adversely affected by 18 years service under sustained loading, and have retained the vast majority of their original, unstressed material properties. The in-service tendons only lost about 10.5% of their ultimate tensile capacity over time, while the pristine (unstressed) tendons also lost 7.9% of their capacity; this suggests that sustained loading and an external, unconditioned service environment do not significantly adversely affect the mechanical properties of the tendons after 18 years in service.
10.14359/51740648
SP-360_01
Junrui Zhang, Enrique del Rey Castillo, Ravi Kanitkar, Aniket D Borwankar, and Ramprasath R
A systematic literature review was conducted on pure tension strengthening of concrete structures using fiber-reinforced polymer (FRP), specifically for larger FRP tie applications. This work yielded a dataset of 1,627 direct tension tests, and highlighted the limitation of existing studies on studying thick and long FRP ties, which are typical in real construction scenarios. To overcome this shortcoming, 51 single lap shear tests were conducted on thicker and longer FRP ties, with the dimensions being 0.5 to 6 mm [0.02 to 0.24 in.] thickness, and 300 to 1,524 mm [12 to 60 in.] long. The critical parameters under consideration were concrete compressive strength, FRP thickness, and bond length. The findings demonstrate that thicker and therefore stiffer FRP ties have higher debond force capacity, while longer ties exhibit greater post-elastic deformation capacity but do not affect the debond force capacity. Concrete had a limited effect on either debond force or deformation capacity. A strength model is proposed for FRP systems under axial pure tension, which aligns well with both the published and tested results. This paper focuses on the development of design guidelines and codes to predict the debond strain for EB-FRP systems incorporating thicker and longer FRP ties, aiming to enhance the applicability of FRP to real-world construction scenarios.
10.14359/51740613
SP-360_02
John J. Myers
The American Concrete Institute (ACI) 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars linearly reduces the bar stress and thereby pull-out capacity of FRP bars to zero from an embedment length at 20 bar diameters (db) or less. Most experimental research and data examine the development length of various FRP bars at longer, more traditional, embedment lengths. A database was created from select available data in literature to compare to empirical standards. This investigation examines the bond performance of short embedded FRP bars into concrete considering a pull-out failure mode to expand the understanding of short embedded FRP bars into concrete. Based upon the database collected, for the glass fiber-reinforced polymer (GFRP) rebars, the current 440.1R appear quite conservative. For the basalt fiber-reinforced polymer (BFRP) rebar database collected, the current ACI 440.1R-15 provisions appear unconservative for a statistically significant number of the specimen test results within the database. In the case of the carbon fiber-reinforced polymer (CFRP) database, which is quite limited, the data appears to develop considerably less bond strength than the current 440.1R provisions might suggest which requires deeper investigation for the case of short embedment length bonded CFRP bars.
10.14359/51740614
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer