International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 53 Abstracts search results

Document: 

SP-360_07

Date: 

March 1, 2024

Author(s):

Jaeha Lee, Kivanc Artun, Charles E. Bakis, Maria M. Lopez and Thomas E. Boothby

Publication:

Symposium Papers

Volume:

360

Abstract:

Small-scale plain concrete precracked beams strengthened with glass fiber reinforced polymer (GFRP) sheets underwent testing in 3-point flexure to assess variations in the FRP-concrete Mode II interfacial fracture energy after 6 and 13 years of sustained loading in indoor and outdoor environments. The Mode II fracture energy of the interfacial region, GF, was determined by analyzing strain profiles along the length of the FRP sheet, which were obtained using digital image correlation and photoelastic techniques. In the experiments conducted after conditioning, higher GF values were observed as the debonded zone progressed from the region of sustained shear stress transfer to the unstressed section of the interfacial region, particularly in beams subjected to outdoor conditioning. In the interfacial region near the notch, GFRP beams showed reductions in GF in both indoor and outdoor environments. For outdoor beams with GFRP sheets, there was no additional degradation in GF when the FRP was exposed to direct sunlight, in comparison to beams with the FRP exposed to indirect sunlight.

DOI:

10.14359/51740619


Document: 

SP-360_08

Date: 

March 1, 2024

Author(s):

Nadia Nassif , M. Talha Junaid, Salah Altoubat, Mohamed Maalej, and Samer Barakat

Publication:

Symposium Papers

Volume:

360

Abstract:

Fiber-reinforced polymer (FRP) bars can serve as an appropriate substitute for steel rebar due to their lightweight, high strength, and good corrosion resistance. Nevertheless, the long-term success of FRP bars as promising reinforcement in concrete depends on understanding the bond between FRP bars and concrete. ACI 440.1R-15 recommends utilizing CSA S806-12 Annex S ‘‘Test Method for Determining the Bond-Dependent Coefficient of FRP Rods” for estimating the design value of the bond-dependent coefficient (kb). However, this testing method requires a four-point loaded 3.0-meter-long beam with continuous assessment of developed crack width. Due to the complexity of the test, studies were scarce in assessing the factors affecting the kb. Therefore, this study aimed to relate the experimental kb obtained from large-scale testing to a relatively simpler bond strength value, τu , obtained from smaller-scale FRP pull-out test. The relation was established utilizing data collection for both tests from experimental studies. Three machine learning techniques (Ensembled Trees Artificial Neural Network and Gaussian Process Machines) were then applied to mimic and understand the complex bond-behaviour at varying FRP and concrete properties. The results have shown promising relation (R2>0.8) between kb and τu for different surface textures and fibre types.

DOI:

10.14359/51740620


Document: 

SP-360_09

Date: 

March 1, 2024

Author(s):

Juan Torres Acosta and Douglas Tomlinson

Publication:

Symposium Papers

Volume:

360

Abstract:

Three bridge barriers were tested under pseudo-static loading to assess the effectiveness of a dowelling repair technique for restoring the capacity of damaged glass fiber-reinforced polymer (GFRP) reinforced systems. Barriers were 1500 mm (59.1 in.) wide and tested with an overhang of 1500 mm (59.1 in.). One barrier was entirely reinforced with steel reinforcement with the layout and geometry common in Alberta, Canada for highway applications. A second barrier replaced all steel reinforcement with GFRP bars. The third barrier simulates repair where the barrier is damaged and needs to be replaced by removing the barrier, drilling holes, and using epoxy to dowel GFRP bars into the deck. All barriers failed by concrete splitting at the barrier/deck interface which is attributed to the complex interaction of stresses from the barrier wall and overhang. The steel reinforced barrier was strongest but had slightly lower energy dissipation than the GFRP reinforced barriers. The repaired GFRP reinforced barrier had very similar response to the baseline GFRP reinforced barrier but reached a slightly larger capacity. Previously completed finite element models showed similar general responses and failure modes but larger stiffnesses and strengths than the tests which requires further investigation.

DOI:

10.14359/51740621


Document: 

SP-360_10

Date: 

March 1, 2024

Author(s):

Sara Mirzabagheri, Andrew Kevin Kenneth Doyle, Amir Mofidi, Omar Chaallal

Publication:

Symposium Papers

Volume:

360

Abstract:

Embedded Through-Section (ETS) method is a shear rehabilitation technique for concrete structures involving pre-drilling vertical holes into a reinforced concrete member and installing FRP bars to be bonded using epoxy adhesive. Due to the lack of reliable models for predicting the ETS FRP bond behaviour, developing an accurate model to predict the maximum pull-out force of the ETS technique was deemed a knowledge gap. In this study, the main parameters used in an analytical bond-slip model proposed by the authors were obtained empirically and evaluated against the existing experimental results in the literature. To be able to calculate the maximum pull-out force for ETS FRP bars with different materials, a fracture mechanics-based bond model was defined in terms of the joints' geometrical and material properties, to allow the model to predict the performance of any FRP type with any concrete compressive strength. By using data in the available literature on FRP ETS pull-out tests, statistical analysis was utilized to fit the parameters against experimental data. The proposed model was able to produce superior analytical predictions of the experimental test data when compared to the existing bond models for ETS FRP bars.

DOI:

10.14359/51740622


Document: 

SP-360_11

Date: 

March 1, 2024

Author(s):

Mohamed Ahmed, Slimane Metiche, Radhouane Masmoudi, Richard Gagne, and Jean- Philippe Charron

Publication:

Symposium Papers

Volume:

360

Abstract:

his paper presents preliminary experimental and numerical results of a research program aimed at investigating the residual capacity of 60-year-old reinforced concrete bridge girders strengthened using CFRP sheets. Two 4.5 m and 5.0 m long, bridge girders were deconstructed from a bridge located in Canada. The two 60-year-old girders have been strengthened with CFRP for the last six years of the service life of the bridge. The two full-scale girders were tested at the structural lab of Sherbrooke’s University after having suffered under real service conditions. A finite element model using the ANSYS program had been validated with the experimental results before it was used as a control sample for non-strengthened conditions. The test results revealed that the CFRP strengthening technique can extend the service life of the bridge element by keeping their shear capacity safe. The CFRP strengthening configuration of the two girders increased the maximum shear capacity by 35.5 % and 30 % over the finite element control model. The presented outcomes show the effectiveness of using the external CFRP sheets as an external technique for bridge rehabilitation. The test results were compared with the ACI 440 2R-17 and CSA S6-19 design guidelines. The theoretical comparison between guidelines, experimental and numerical results shows that the two guidelines are considered overly conservative.

DOI:

10.14359/51740623


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer