ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 53 Abstracts search results
Document:
SP-360_45
Date:
March 1, 2024
Author(s):
C. Barris, F. Ceroni, A. Perez Caldentey
Publication:
Symposium Papers
Volume:
360
Abstract:
Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement. This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.
Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement.
This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.
DOI:
10.14359/51740657
SP-360_46
Charles Tucker Cope III, Mohammod Minhajur Rahman, Francesco Focacci, Tommaso D’Antino, Iman Abavisani, and Christian Carloni
GFRP bars are considered an alternative to steel for concrete reinforcement. This project investigated the fatigue behavior of GFRP bars embedded in concrete, studying bond behavior at material and structural scales. GFRP bars (12 mm [0.47 in.] nominal diameter) were embedded in concrete cylinders leaving a 50 mm [2 in.] protrusion at the free end and featuring different bonded lengths. Two types of GFRP bars with different surface treatment (lacquered and unlacquered) were used. Static tests were used to determine the bonded length required for cyclic pull-out tests, Cyclic tests at 1.5 Hz showed GFRP bar failure was possible at just 20% of their reduced tensile strength (0.8ffu) as prescribed in ACI 440.1R-15. Two full-scale slabs internally reinforced with unlacquered GFRP bars were tested using a four-point bending configuration. A quasi-static test was used as a control to determine the fatigue amplitude, considering the fatigue loading provided by the ACI 440.1R-15 document and the pull-out test results with cyclic loading presented in this work. Cyclic load between 10 kN [2.25 kips] and 40 kN [9 kips] at a 1.5 Hz frequency was applied up to 5 million cycles before a subsequent quasi-static test was conducted. The load range was determined using cross-section analysis to cycle the bars between 5% and 20% of their reduced tensile strength (0.8ffu). Both slabs ultimately failed due to shear failure, with cyclic loading having little impact on the slab compliance. Displacements of the load points and supports were measured using linear variable displacement transformers (LVDTs), while digital image correlation (DIC) was utilized to obtain the full-field displacement and strain in the central region of the slab. The strain and displacement fields from DIC were used to determine the opening of flexural cracks and relate it to the stress level in the GFRP bars. A comparison between the static pull-out tests and the four-point bending tests of slabs indicated that the pull-out test could be used to describe the flexural behavior of the slab at low stress level. However, in terms of fatigue behavior, the comparison between the small- and large-scale tests indicated that the fatigue phenomenon in the slab was quite complex and could not be directly described by the results of pull-out tests.
10.14359/51740658
SP-360_47
Bartosz Piątek and Tomasz Siwowski
Due to a dynamic development of infrastructure, engineers around the world are looking for new materials and structural solutions, which could be more durable, cheaper in the life cycle management, and built quickly. One of prospective solutions for building small-span bridges can be precast lightweight concrete reinforced with glass fiber-reinforced polymer (GFRP) rebars. Thanks to prefabrication, it is possible to shorten the construction time. Using lightweight concrete affects structure weight as well as transportation costs. GFRP rebars can make the structure more durable and also cheaper in terms of life cycle management costs. The paper focuses on the fatigue performance of a real-scale arch (10.0 m (33 ft) long, 1.0 m (3.3 ft) wide, and 2.4 m (7.9 ft) high) made of lightweight concrete and GFRP rebars (LWC/GFRP) in comparison with an arch made of normal weight concrete and typical steel reinforcement (NWC/steel). The fatigue loads ranging from 12 to 120 kN (2.7 to 27 kip) were applied in a sinusoidal variable manner with a frequency of 1.5 Hz. This research revealed that the NWC/steel arch exhibited significantly better fatigue resistance when compared to the LWC/GFRP arch. Differences in the behavior of the NWC/steel and LWC/GFRP models under fatigue load were visible from the beginning of the research. The LWC/GFRP model was exposed to fatigue loads, resulting in gradual deterioration at an early stage. This degradation was evident through stiffness being progressively reduced, leading to increased displacements and strains as the number of load cycles increased. The model did not withstand the fatigue load and was destroyed after approximately 390 thousand load cycles, in contrast to the NWC/steel model, which withstood all 2 million load cycles without significant damages or the stiffness being decreased. However, the prefabricated lightweight concrete arches with composite reinforcement seem to be an interesting alternative of load-bearing elements in infrastructure construction.
10.14359/51740659
SP-360_48
Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad
Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad Synopsis: The externally bonded reinforcement on grooves (EBROG) technique has been recently shown to outperform its rival techniques of surface preparation (such as externally bonded reinforcement, EBR) employed to delay the undesirably premature debonding of fiber reinforced polymer (FRP) from the concrete substrate in retrofitted structure. However, the behavior of EBROG method under fatigue loading has not been assessed yet, and the present study is the first attempt to achieve the above aim. For this purpose, an experimental program is conducted in which 16 CFRP-to-concrete bonded joints on the concrete slab prepared through the EBROG and EBR techniques are subjected to the single lap-shear test and fatigue cyclic loading. Furthermore, the bond behavior of CFRP strips-to-concrete substrate is investigated in this research in terms of the load capacity, slip, debonding mechanism, and fatigue life. The results showed that the grooving method improved the bond properties of CFRP-to-concrete joints under fatigue loading. By using this alternative technique, the number of cycles until failure (fatigue life) increases incredibly under the same fatigue cycle loading and the service life of strengthened members could be improved under fatigue loading. Furthermore, the effects of different loading levels on the behavior of CFRP-concrete joints installed by EBROG method are evaluated. The results showed that fatigue life of strengthened specimens decreases by increasing fatigue upper load limit. Finally, a new predictive equation was developed based on plotting the maximum applied fatigue load versus fatigue life curves for CFRP-to-concrete bonded joints for the EBROG method.
10.14359/51740660
SP-360_49
Shuqing Liu and Maria Anna Polak
This paper presents an indeterminate strut-and-tie (IST) method to analyze concrete deep members reinforced with fibre-reinforced polymer (FRP) bars. Because FRP bars are linear-elastic and brittle at failure, the classical ST method based on steel yielding cannot be used to analyze FRP-reinforced concrete deep beams, and current code provisions lack guidance on such designs. Thus, the IST method is proposed for the analysis. This work addresses the details of using the proposed IST method to analyze FRP-reinforced concrete deep beams, including how to size the struts and nodes without assuming steel yielding, how to model the compressive behaviour of concrete struts reasonably, and how to construct and analyze statically indeterminate ST models. Six FRP-reinforced concrete deep beams with stirrups and six beams without stirrups are analyzed in this work, and it is found that the proposed method works well to predict the shear strength of FRP-reinforced concrete deep beams by comparing the analytical results with the test results.
10.14359/51740661
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer