Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 25 Abstracts search results
Document:
SP63-24
Date:
August 1, 1980
Author(s):
L. Bogue Sandberg and Fred W. Beaufait
Publication:
Symposium Papers
Volume:
63
Abstract:
The results of a study of the behavior of a shear wall stair shaft are summarized. Comparisons are made between deflections of a 1/24 scale Plexiglas model and predicted deflections from beam theory and finite element analyses. Both lateral loads and torsion are considered. Stair system stresses from a finite element analysis of a full scale, concrete prototype of the model are summarized. It is concluded that beam theory tends to over-estimate shear wall stiffness, and than an effort must be made to prevent damage to the stair system from severe shear wall deformations.
DOI:
10.14359/6667
SP63-23
A. Coull and S. A. Abu El Magd
A simplified method is presented for the analysis of laterally loaded wide-flanged shear wall structures with rigid or flexible joints between web and flange. The flange and web elements may be either of solid or framed construction, the latter being included by replacing the frame panel by an equivalent orthotropic plate in which the shear modulus is chosen to model the racking behaviour of the rigidly-jointed frame. The results obtained are compared both with theoretical values obtained by the finite element and frame methods, and with the results from a series of tests on small-scale plexiglass models. The method gives results which are sufficiently accurate for practical purposes, and enable the degree of shear lag in the flange, the effective width, and the lateral deflection to be estimated rapidly.
10.14359/6666
SP63-22
Y. C. Wong and A. Coull
An influence coefficient method is presented for the analysis of the interaction between laterally loaded walls, of different cross-sectional shapes, and their connecting floor slabs. The results have been tested for both convergence and accuracy against those obtained by the finite element and finite difference technique. The method yields accurate results for both slab stiffness and stresses, with a considerable saving in computer time over the other theoretical analyses.
10.14359/6665
SP63-21
B. Stafford Smith and I. 0. Nwaka
A study is made of the forces and displacements in multi-outrigger tall building structures. Simplified general equations are developed for the restraining moment of the out-riggers, the reduction in drift and the optimum location of the outriggers for maximum drift reduction. The efficiencies of various optimum and evenly spaced outrigger systems are presented. The assumptions used make the method of analysis suitable only for preliminary design guidance; however, some valuable general conclusions relating to the number and location of outriggers are drawn.
10.14359/6664
SP63-20
J. Schwaighofer and W. N. Ho
The equivalent frame method is employed in the elasto-plastic analysis of a perforated core structure which is subjected to uniformly distributed torque over the height of the core. In a step by step approach the sequence of crack formation, and the onset of yielding of the tension steel in the coupling elements and the shear walls is given.
10.14359/6663
Results Per Page 5 10 15 20 25 50 100