Effect of Acoustoelasticity on Ultrasonic Pulses and Damage of Concrete under Tensile Stresses

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of Acoustoelasticity on Ultrasonic Pulses and Damage of Concrete under Tensile Stresses

Author(s): Carnot L. Nogueira and Kevin L. Rens

Publication: Materials Journal

Volume: 115

Issue: 3

Appears on pages(s): 381-391

Keywords: acoustoelasticity; damage; flexural strength; mechanical properties; Murnaghan parameters; tensile stresses; ultrasonic pulse velocity

DOI: 10.14359/51702184

Date: 5/1/2018

Abstract:
Longitudinal and transverse ultrasonic pulse velocities were used to assess acoustoelastic effect and damage in concrete under tensile stresses. In the experimental program, six concrete mixtures (16 specimens) were tested using third-point loading tests. During stress application, longitudinal and transverse ultrasonic pulses were transmitted perpendicularly to the applied stresses; transverse pulses were polarized in the tensile stress field direction and normal to stress field; and Murnaghan acoustoelastic parameters were calculated. After separating the acoustoelastic effect and obtaining net pulse velocities, two scalar damage models were used to evaluate degradation due to loading. One damage model assumed elastic modulus degradation alone, while the second model was based on both shear and elastic moduli. The high magnitudes of the third-order Murnaghan parameters indicate the strong influence of the acoustoelastic effect in ultrasonic testing of concrete. Results also showed that both moduli degrade at the same rate when concrete is loaded under tensile stresses.

Related References:

1. Mehta, P. K., and Monteiro, P. J. M., “Concreto: Microestrutura, Propriedades e Materiais,” IBRACON, São Paulo, Brazil, 2008. (in Portuguese)

2. Rens, K. L.; Nogueira, C. L.; and Transue, D. J., “Bridge Management and Nondestructive Evaluation,” Journal of Performance of Constructed Facilities, ASCE, V. 19, No. 1, 2005, pp. 3-16. doi: 10.1061/(ASCE)0887-3828(2005)19:1(3)

3. Berthaud, Y., “Damage Measurements in Concrete Via an Ultrasonic Technique: Part I. Experiment,” Cement and Concrete Research, V. 21, No. 1, 1991, pp. 73-82.

4. Berthaud, Y., “Damage Measurements in Concrete Via an Ultrasonic Technique: Part II. Modeling,” Cement and Concrete Research, V. 21, No. 2-3, 1991, pp. 219-228.

5. Nogueira, C. N., and Willam, K. J., “Ultrasonic Testing of Damage in Concrete under Uniaxial Compression,” ACI Materials Journal, V. 98, No. 3, May-June 2001, pp. 265-275.

6. Lemaitre, J., and Charboche, J. L., Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK, 1990, 556 pp.

7. Nogueira, C. L., “Wavelet-Based Analysis of Ultrasonic Longitudinal and Transverse Pulses in Cement-Based Materials,” Cement and Concrete Research, V. 41, No. 11, 2011, pp. 1185-1195. doi: 10.1016/j.cemconres.2011.07.008

8. Becker, J.; Jacobs, L. J.; and Qu, J., “Characterization of Cement-Based Materials Using Diffuse Ultrasound,” Journal of Engineering Mechanics, ASCE, V. 129, No. 12, 2003, pp. 1478-1484. doi: 10.1061/(ASCE)0733-9399(2003)129:12(1478)

9. Aggelis, D. G., and Shiotani, T., “Effect of Inhomogeneity Parameters on Wave Propagation in Cementitious Materials,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 187-193.

10. Selleck, S. F.; Landis, E. N.; Peterson, M. L.; Shah, S. P.; and Achenbach, J. G., “Ultrasonic Investigation of Concrete with Distributed Damage,” ACI Materials Journal, V. 95, No. 1, Jan.-Feb. 1998, pp. 27-36.

11. Ervin, B. L.; Kuchma, D. A.; Bernhard, J.; and Reis, H., “Monitoring Corrosion of Rebar Embedded in Mortar Using High-Frequency Guided Ultrasonic Waves,” Journal of Engineering Mechanics, ASCE, V. 135, No. 1, 2009, pp. 9-19. doi: 10.1061/(ASCE)0733-9399(2009)135:1(9)

12. Xu, J., Yao, W., “Multiscale Mechanical Quantification of Self-Healing Concrete Incorporating Non-Ureolytic Bacteria-Based Healing Agent,” Cement and Concrete Research, V. 64, 2014, pp. 1-10.

13. Williams, S. L.; Sakib, N.; Kirisits, M. J.; and Ferron, R. D., “Flexural Strength Recovery Induced by Vegetative Bacteria Added to Mortar,” ACI Materials Journal, V. 113, No. 4, July-Aug. 2016, pp. 523-531.

14. Brillouin, L., “Sur les Tensions de Radiation,” Annales de Physique, V. 10, No. 4, 1925, pp. 528-586. doi: 10.1051/anphys/192510040528

15. Hughes, D. S., and Kelly, J. L., “Second-Order Elastic Deformation of Solids,” Physical Review, V. 92, No. 5, 1953, pp. 1145-1149. doi: 10.1103/PhysRev.92.1145

16. Abiza, Z.; Destrade, M.; and Ogden, R. W., “Large Acoustoelastic Effect,” Wave Motion, V. 49, No. 2, 2012, pp. 364-374. doi: 10.1016/j.wavemoti.2011.12.002

17. Grüneisen, E., “Die Elastischen Konstanten der Metalle bei Kleinen Deformationen. I. Der dynamisch und statisch gemessene Elastizitätsmodul,” Annalen der Physik, V. 327, No. 5, 1907, pp. 801-851. doi: 10.1002/andp.19073270502

18. Grüneisen, E., “Zusammenhang Zwischen Kompressibilität, Thermischer Ausdehnung, Atomvolumen und Atomwärme der Metalle,” Annalen der Physik, V. 331, No. 7, 1908, pp. 393-402. doi: 10.1002/andp.19083310707

19. Murnaghan, F. D., “Finite Deformations of an Elastic Solid,” American Journal of Mathematics, V. 59, No. 2, 1937, pp. 235-260. doi: 10.2307/2371405

20. Murnaghan, F. D., Finite Deformation of an Elastic Solid, JohnWiley & Sons, Inc., New York, 1951, 140 pp.

21. Seeger, V. A., and Buck, O., “Die Experimentelle Ermittlung der Elastischen Konstanten Höherer Ordnung,” Zeitschrift für Naturforschung 15 a, 1960, pp. 1056-1067.

22. Ledbetter, H. M., and Reed, R. P., “Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys,” Journal of Physical and Chemical Reference Data, V. 2, No. 3, 1973.

23. Stern, E. A., “Theory of the Anharmonic Properties of Solids,” Physical Review, V. 111, No. 3, 1958, pp. 786-797. doi: 10.1103/PhysRev.111.786

24. Egle, D. M., and Bray, D. E., “Measurement of Acoustoelastic and Third Order Elastic Constants for Rail Steel,” The Journal of the Acoustical Society of America, V. 60, No. 3, 1976, pp. 741-744. doi: 10.1121/1.381146

25. Truesdell, C., “General and Exact Theory of Waves in Finite Elastic Strain,” Archive for Rational Mechanics and Analysis, V. 8, No. 1, 1961, pp. 263-296. doi: 10.1007/BF00277444

26. Toupin, R. A., and Bernstein, B., “Sound Waves in Deformed Perfectly Elastic Materials. Acoustoelastic Effect,” The Journal of the Acoustical Society of America, V. 33, No. 2, 1961, pp. 216-225. doi: 10.1121/1.1908623

27. Thurston, R. N., and Brugger, K., “Third-Order Elastic Constants and the Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed Media,” Physical Review, V. 133, 1964, pp. A1604-A1610. doi: 10.1103/PhysRev.133.A1604

28. Landau, L. D., and Lifshitz, E. M., Theory of Elasticity, Pergamon, New York, 1986, 165 pp.

29. Lurie, A. I., Theory of Elasticity, Springer, 2005, 1050 pp.

30. Popovics, S., “Effect of Stress on the Ultrasonic Pulse Velocity in Concrete,” Materials and Structures, V. 24, No. 1, 1991, pp. 15-23. doi: 10.1007/BF02472676

31. Smith, R. T., “Stress-Induced Anisotropy in Solids—The Acousto-Elastic Effect,” Ultrasonics, V. 1, No. 3, 1963, pp. 135-147. doi: 10.1016/0041-624X(63)90003-9

32. Payan, C.; Garnir, V.; and Moysan, J., “Determination of Third Order Elastic Constants in a Complex Solid Applying Coda Wave Interferometry,” Applied Physics Letters, V. 94, No. 011904, 2009, pp. 1-3.

33. Lillamand, I.; Chaix, J. F.; Ploix, M. A.; and Garnier, V., “Acoustoelastic Effect in Concrete Material under Uni-axial Compressive Loading,” NDT and E International, V. 43, No. 8, 2010, pp. 655-660.

34. Shokouhi, P.; Zoega, A.; Wiggenhauser, H.; and Fischer, G., “Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete,” ACI Materials Journal, V. 109, No. 2, Mar.-Apr. 2012, pp. 141-148.

35. Zhang, Y.; Abraham, O.; Grondin, F.; Loukili, A.; Tournat, V.; Le Duff, A.; Lascoup, B.; and Durand, O., “Study of Stress-induced Velocity Variation in Concrete under Direct Tensile Force and Monitoring of the Damage Level by Using Thermally-Compensated Coda Wave Interferometry,” Ultrasonics, V. 52, No. 8, 2012, pp. 1038-1045.

36. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.

37. AASHTO LRFD, “Bridge Design Specifications,” American Association of State Highway and Transportation Officials, Washington, DC, 2012.

38. Tanesi, J.; Ardani, A. A.; and Leavitt, J. C., “Reducing the Specimen Size of the AASHTO T 97 Concrete Flexural Strength Test for Safety and Ease of Handling,” Journal of the Transportation Research Board, V. 2342, Washington, DC, 2013, pp. 99-105.

39. Kraukrämer, J., and Krautkrämer, H., Ultrasonic Testing of Materials, fourth edition, Springer-Verlag, Berlin, Germany, 1990, 677 pp.

40. ASTM C78-02, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beams with Third-Point Loading),” ASTM International, West Conshohocken, PA, 2002, 3 pp.

41. Si-Chaib, M. O.; Djelouah, H.; Boutkedjirt, T., “Propagation of Ultrasonic Waves in Materials under Bending Forces,” NDT&E International, V. 38, No. 4, 2005, pp. 283-289.

42. Rokugo, K.; Uchida, Y.; Katoh, H.; and Koyanagi, W., “Fracture Mechanics Approach to Evaluation of Flexural Strength of Concrete,” ACI Materials Journal, V. 92, No. 5, Sept.-Oct. 1992, pp. 561-566.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer