Title:
Acoustoelastic Response of Concrete under Uniaxial Compression
Author(s):
Carnot L. Nogueira and Kevin L. Rens
Publication:
Materials Journal
Volume:
116
Issue:
3
Appears on pages(s):
21-33
Keywords:
acoustoelastic-induced anisotropy; acoustoelasticity; concrete acoustoelastic response; mechanical properties; Murnaghan parameters; ultrasonic pulse velocity
DOI:
10.14359/51714462
Date:
5/1/2019
Abstract:
Experiments were conducted to evaluate the acoustoelastic behavior of concrete under uniaxial compression. In the first part of the paper, third-order acoustoelastic parameters were experimentally determined for 14 specimens made with 10 different mixtures (nine concretes and one mortar) using ultrasonic pulse velocity measurements of waves propagating perpendicularly to load direction. In the second part of the research, acoustoelastic stress-strain relations, based on Murnaghan third-order parameters determined in the experiments, were used to model concrete behavior and to evaluate changes in concrete elastic properties. Results demonstrate the relevance of the acoustoelastic effect in concrete mechanical behavior and proves that concrete becomes anisotropic due to the acoustoelastic response (acoustoelasticinduced anisotropy).
Related References:
1. Hooke, R., “Lectures de Potentia Restitutiva,” Early Science in Oxford, V. 8, 1678, pp. 331-356.
2. Young, T., “Mathematical Elements of Natural Philosophy,” A Course of Lectures on Natural Philosophy and the Mechanical Arts 2, London, UK, 1807, pp. 1-86.
3. Lamé, G., “Leçons sur la Théorie Mathématique de l'Élasticité des Corps Solides,” Gauthier-Villars, Paris, France, 1866.
4. Finger, J., “Das Potential der inneren Krafte und die Beziehungen zwischen den Deformationen und den Spannungen in elastisch isotropen Korpern,” Sitzg. Akad. Wiss., Wien, IIa 103, 1894, pp. 163-200, 231-250.
5. Brillouin, L., “Sur les tensions de radiation,” Annales de Physiquee, V. 10, No. 4, 1925, pp. 528-586.
6. Murnaghan, F. D., “Finite Deformations of an Elastic Solid,” American Journal of Mathematics, V. 59, No. 2, 1937, pp. 235-260. doi: 10.2307/2371405
7. Murnaghan, F. D., Finite Deformation of an Elastic Solid, Wiley, New York, 1951.
8. Hughes, D. S., and Kelly, J. L., “Second-Order Elastic Deformation of Solids,” Physical Review, V. 92, No. 5, 1953, pp. 1145-1149. doi: 10.1103/PhysRev.92.1145
9. Seeger, V. A., and Buck, O., “Die Experimentelle Ermittlung der Elastischen Konstanten Höherer Ordnung,” Zeitschrift fur Naturforschung, 1960, pp. 1056-1067.
10. Truesdell, C., and Noll, W., The Non-linear Field Theories of Mechanics, Springer, Berlin, Germany, 1965, 236 pp.
11. Landau, L. D., and Lifshitz, E. M., Theory of Elasticity, third edition, Pergamon, New York, 1986.
12. Ledbetter, H. M., and Reed, R. P., “Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron‐Nickel Alloys,” Journal of Physical and Chemical Reference Data, V. 2, No. 3, 1973, pp. 531-618. doi: 10.1063/1.3253127
13. Zarembo, L. K.; Krasil’nikov, V. A.; and Shkol’nik, I. E., “Nonlinear Acoustics in a Problem of Diagnosing the Strength of Solids,” Strength of Materials, V. 21, No. 11, 1989, pp. 1544-1551. doi: 10.1007/BF01529410
14. Shkolnik, I. E., “Effect of Nonlinear Response of Concrete on its Elastic Modulus and Strength,” Cement and Concrete Composites, V. 27, No. 7-8, 2005, pp. 747-757. doi: 10.1016/j.cemconcomp.2004.12.006
15. Lurie, A. I., Theory of Elasticity, Springer-Verlag, Berlin, Germany, 2005.
16. Nogueira, C. L., “Ultrasonic Evaluation of Acoustoelastic Parameters in Aluminum,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 10, 2017, p. 04017158 doi: 10.1061/(ASCE)MT.1943-5533.0002009
17. Payan, C.; Garnier, V.; Moysan, J.; and Johnson, P. A., “Determination of Third Order Elastic Constants in a Complex Solid Applying Coda Wave Interferometry,” Applied Physics Letters, V. 94, No. 1, 2009, p. 011904. doi: 10.1063/1.3064129
18. Lillamand, I.; Chaix, J.-F.; Ploix, M.-A.; and Garnier, V., “Acoustoelastic Effect in Concrete Material under Uniaxial Compressive Loading,” NDT & E International, V. 43, No. 8, 2010, pp. 655-660. doi: 10.1016/j.ndteint.2010.07.001
19. Nogueira, C. L., and Rens, K. L., “Effect of Acoustoelasticity on Ultrasonic Pulses and Damage of Concrete under Tensile Stresses,” ACI Materials Journal, V. 115, No. 3, May 2018, pp. 381-391. doi: 10.14359/51702184
20. Payan, C.; Garnier, V.; and Moysan, J., “Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete,” Advances in Civil Engineering, V. 2010, 2010, pp. 1-8. doi: 10.1155/2010/238472
21. Nemati, K. M.; Monteiro, P. J. M.; and Cook, N. G. W., “A New Method for Studying Stress-Induced Microcracks in Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 10, No. 3, 1998, pp. 128-134. doi: 10.1061/(ASCE)0899-1561(1998)10:3(128)
22. Nemati, K. M.; Monteiro, P. J. M.; and Scrivener, K. L., “Analysis of Compressive Stress-Induced Cracks in Concrete,” ACI Materials Journal, V. 95, No. 5, Sept.-Oct. 1998, pp. 617-631.
23. Pituba, J. J. C., and Fernandes, G. R., “Anisotropic Damage Model for Concrete,” Journal of Engineering Mechanics, ASCE, V. 137, No. 9, 2011, pp. 610-624. doi: 10.1061/(ASCE)EM.1943-7889.0000260
24. Chen, W.-F., and Saleeb, A. F., Constitutive Equations for Engineering Materials, first edition, Elsevier, Amsterdam, the Netherlands, 1994.
25. Popovics, S., and Popovics, J. S., “Effect of Stress on the Ultrasonic Pulse Velocity in Concrete,” Materials and Structures, V. 24, No. 1, 1991, pp. 15-23. doi: 10.1007/BF02472676
26. Abiza, Z.; Destrade, M.; and Ogden, R. W., “Large Acoustoelastic Effect,” Wave Motion, V. 49, No. 2, 2012, pp. 364-374. doi: 10.1016/j.wavemoti.2011.12.002
27. Norris, A., “Finite Amplitude Waves in Solids,” Nonlinear Acoustics, M. F. Hamilton and D. T. Blackstock, eds., Chapter 9, Academic Press, San Diego, CA, 1998, 20 pp.
28. Smith, R. T., “Stress-Induced Anisotropy in Solids—The Acousto-Elastic Effect,” Ultrasonics, V. 1, No. 3, 1963, pp. 135-147. doi: 10.1016/0041-624X(63)90003-9
29. Egle, D. M., and Bray, D. E., “Measurement of Acoustoelastic and Third Order Elastic Constants for Rail Steel,” The Journal of the Acoustical Society of America, V. 60, No. 3, 1976, pp. 741-744. doi: 10.1121/1.381146
30. Toupin, R. A., and Bernstein, B., “Sound Waves in Deformed Perfectly Elastic Materials. Acoustoelastic Effect,” The Journal of the Acoustical Society of America, V. 33, No. 2, 1961, pp. 216-225. doi: 10.1121/1.1908623
31. Gamer, U., and Pao, Y.-H., “Propagation of Disturbances in Predeformed Elastic-Plastic Materials,” Zeitschrift für Angewandte Mathematik und Mechanik, V. 63, 1983, p. T158.
32. Pao, Y.-H.; Sachse, W.; and Fukuoka, H., “Acoustoelasticity and Ultrasonic Measurement of Residual Stress,” Physical Acoustics, W. P. Mason and R. N. Thurston, eds., Academic Press, New York, 1984, pp. 61-143.
33. Pao, Y.-H., and Gamer, U., “Acoustoelastic Waves in Orthotropic Media,” The Journal of the Acoustical Society of America, V. 77, No. 3, 1985, pp. 806-812. doi: 10.1121/1.392384
34. Gandhi, N.; Michaels, J. E.; and Lee, S. J., “Acoustoelastic Lamb Wave Propagation in a Homogeneous, Isotropic Aluminum Plate,” AIE Conference Proceedings, American Institute of Physics, Melville, NY, 2011, pp. 161-168.
35. Gandhi, N.; Michaels, J. E.; and Lee, S. J., “Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates,” The Journal of the Acoustical Society of America, V. 132, No. 3, 2012, pp. 1284-1293. doi: 10.1121/1.4740491
36. Pei, N., and Bond, L. J., “Higher Order Acoustoelastic Lamb Wave Propagation in Stressed Plates,” The Journal of the Acoustical Society of America, V. 140, No. 5, 2016, pp. 3834-3843. doi: 10.1121/1.4967756
37. Gandhi, N., “Determination of Dispersion Curves for Acoustoelastic Lamb Wave Propagation,” master’s thesis, Georgia Institute of Technology, Atlanta, GA, 2010.
38. Nogueira, C. L., “Wavelet-Based Analysis of Ultrasonic Longitudinal and Transverse Pulses in Cement-Based Materials,” Cement and Concrete Research, V. 41, No. 11, 2011, pp. 1185-1195. doi: 10.1016/j.cemconres.2011.07.008
39. Nogueira, C. L., and Willam, K. J., “Ultrasonic Testing of Damage in Concrete under Uniaxial Compression,” ACI Materials Journal, V. 98, No. 3, May-June 2001, pp. 265-275.
40. Nogueira, C. L., “Wavelet Analysis of Ultrasonic Pulses in Cement-Based Materials,” ACI Materials Journal, V. 107, No. 3, May-June 2010, pp. 248-257.
41. Sbartaï, Z. M.; Laurens, S.; Elachachi, S. M.; and Payan, C., “Concrete Properties Evaluation by Statistical Fusion of NDT Techniques,” Construction and Building Materials, V. 37, 2012, pp. 943-950. doi: 10.1016/j.conbuildmat.2012.09.064
42. Ranz, J.; Aparicio, S.; Romero, H.; Casati, M. J.; Molero, M.; and González, M., “Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging,” Sensors (Basel), V. 14, No. 2, 2014, pp. 2280-2304. doi: 10.3390/s140202280
43. Lanza di Scalea, F.; Rizzo, P.; and Seible, F., “Stress Measurement and Defect Detection in Steel Strands by Guided Stress Waves,” Journal of Materials in Civil Engineering, ASCE, V. 15, No. 3, 2003, pp. 219-227. doi: 10.1061/(ASCE)0899-1561(2003)15:3(219)
44. Abbasi, Z., and Ozevin, D., “Acoustoelastic Coefficients in Thick Steel Plates under Normal and Shear Stresses,” Experimental Mechanics, V. 56, No. 9, 2016, pp. 1559-1575. doi: 10.1007/s11340-016-0186-6
45. Mehta, P. K., and Monteiro, P. J. M., Concreto: Microestrutura, Propriedades e Materiais, IBRACON, São Paulo, Brazil, 2008. (in Portuguese)
46. Kraukrämer, J., and Krautkrämer, H., Ultrasonic Testing of Materials, fourth edition, Springer-Verlag, Berlin, Germany, 1990.
47. Beer, F. P.; Johnston Jr., E. R.; DeWolf, J. T.; and Mazurek, F. D., Mechanics of Materials, McGraw-Hill, New York, 2014.
48. Popov, E., Engineering Mechanics of Solids, Prentice-Hall, Englewood Cliffs, NJ, 1999.
49. Ostrovsky, L. A., and Johnson, P. A., “Dynamic Nonlinear Elasticity in Geomaterials,” Rivista del Nuovo Cimento, V. 24, No. 4, 2001, pp. 1-46