ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Effect of Recycled Aggregate Characteristics on Drying Shrinkage of Paving Concrete

Author(s): Seyedhamed Sadati and Kamal H. Khayat

Publication: Materials Journal

Volume: 117

Issue: 2

Appears on pages(s): 87-97

Keywords: cracking susceptibility; recycled concrete aggregate; rigid pavement; shrinkage; sustainability; transportation infrastructure

DOI: 10.14359/51720296

Date: 3/1/2020

Abstract:
The research presented in this paper addresses the effect of coarse recycled concrete aggregate (RCA) on drying shrinkage of concrete designated for transportation infrastructure. Six types of RCA were employed at 30 to 100% replacement rates of virgin coarse aggregate. Two binder systems, including a binary cement with 25% Class C fly ash and a ternary system with 35% fly ash and 15% slag were employed. Three different water-cementitious materials ratios (w/cm) of 0.37, 0.40, and 0.45 were considered. Test results indicate that the use of RCA increased drying shrinkage by up to 110% and 60% after 7 and 90 days of drying, respectively. Correlations with R2 of up to 0.85 were established to determine the shrinkage at 7, 28, 56, and 90 days as a function of aggregate properties, including specific gravity, water absorption, and Los Angeles abrasion resistance of the combined coarse aggregates. The water absorption of the combined coarse aggregate was shown to be a good index to showcase the effect of RCA on shrinkage. Contour graphs were developed to determine the effect of RCA content and its key physical properties on 90-day drying shrinkage of concrete intended for rigid pavement construction. A classification system available in the literature was also used to suggest the maximum allowable replacement rates for use of RCA in a hypothetical case study. Results suggest replacement rates of 100%, 70%, and 50% (% wt.) to limit the 90-day shrinkage to 500 μɛ when RCA of A-1, A-2, and A-3 Classes are available, respectively.


ALSO AVAILABLE IN:

Electronic Materials Journal